Given a tree, and the weights of all the nodes, the task is to find the root of the sub-tree whose weighted sum is minimum.
Examples:
Input:
Output: 5
Weight of sub-tree for parent 1 = ((-1) + (5) + (-2) + (-1) + (3)) = 4
Weight of sub-tree for parent 2 = ((5) + (-1) + (3)) = 7
Weight of sub-tree for parent 3 = -1
Weight of sub-tree for parent 4 = 3
Weight of sub-tree for parent 5 = -2
Node 5 gives the minimum sub-tree weighted sum.
Approach: Perform dfs on the tree, and for every node calculate the sub-tree weighted sum rooted at the current node then find the minimum sum value for a node.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; int ans = 0, mini = INT_MAX; vector< int > graph[100]; vector< int > weight(100); // Function to perform dfs and update the tree // such that every node's weight is the sum of // the weights of all the nodes in the sub-tree // of the current node including itself void dfs( int node, int parent) { for ( int to : graph[node]) { if (to == parent) continue ; dfs(to, node); // Calculating the weighted // sum of the subtree weight[node] += weight[to]; } } // Function to find the node // having minimum sub-tree sum void findMin( int n) { // For every node for ( int i = 1; i <= n; i++) { // If current node's weight // is minimum so far if (mini > weight[i]) { mini = weight[i]; ans = i; } } } // Driver code int main() { int n = 5; // Weights of the node weight[1] = -1; weight[2] = 5; weight[3] = -1; weight[4] = 3; weight[5] = -2; // Edges of the tree graph[1].push_back(2); graph[2].push_back(3); graph[2].push_back(4); graph[1].push_back(5); dfs(1, 1); findMin(n); cout << ans; return 0; } |
Java
// Java implementation of the approach import java.util.*; class GFG { static int ans = 0 , mini = Integer.MAX_VALUE; @SuppressWarnings ( "unchecked" ) static Vector<Integer>[] graph = new Vector[ 100 ]; static Integer[] weight = new Integer[ 100 ]; // Function to perform dfs and update the tree // such that every node's weight is the sum of // the weights of all the nodes in the sub-tree // of the current node including itself static void dfs( int node, int parent) { for ( int to : graph[node]) { if (to == parent) continue ; dfs(to, node); // Calculating the weighted // sum of the subtree weight[node] += weight[to]; } } // Function to find the node // having minimum sub-tree sum x static void findMin( int n) { // For every node for ( int i = 1 ; i <= n; i++) { // If current node's weight x // is minimum so far if (mini > weight[i]) { mini = weight[i]; ans = i; } } } // Driver code public static void main(String[] args) { int n = 5 ; for ( int i = 0 ; i < 100 ; i++) graph[i] = new Vector<Integer>(); // Weights of the node weight[ 1 ] = - 1 ; weight[ 2 ] = 5 ; weight[ 3 ] = - 1 ; weight[ 4 ] = 3 ; weight[ 5 ] = - 2 ; // Edges of the tree graph[ 1 ].add( 2 ); graph[ 2 ].add( 3 ); graph[ 2 ].add( 4 ); graph[ 1 ].add( 5 ); dfs( 1 , 1 ); findMin(n); System.out.print(ans); } } // This code is contributed by shubhamsingh10 |
C#
// C# implementation of the approach using System; using System.Collections.Generic; class GFG { static int ans = 0, mini = int .MaxValue; static List< int >[] graph = new List< int >[100]; static int [] weight = new int [100]; // Function to perform dfs and update the tree // such that every node's weight is the sum of // the weights of all the nodes in the sub-tree // of the current node including itself static void dfs( int node, int parent) { foreach ( int to in graph[node]) { if (to == parent) continue ; dfs(to, node); // Calculating the weighted // sum of the subtree weight[node] += weight[to]; } } // Function to find the node // having minimum sub-tree sum x static void findMin( int n) { // For every node for ( int i = 1; i <= n; i++) { // If current node's weight x // is minimum so far if (mini > weight[i]) { mini = weight[i]; ans = i; } } } // Driver code public static void Main(String[] args) { int n = 5; for ( int i = 0; i < 100; i++) graph[i] = new List< int >(); // Weights of the node weight[1] = -1; weight[2] = 5; weight[3] = -1; weight[4] = 3; weight[5] = -2; // Edges of the tree graph[1].Add(2); graph[2].Add(3); graph[2].Add(4); graph[1].Add(5); dfs(1, 1); findMin(n); Console.Write(ans); } } // This code is contributed by Rajput-Ji |
Python3
# Python3 implementation of the approach ans = 0 mini = 2 * * 32 graph = [[] for i in range ( 100 )] weight = [ 0 ] * 100 # Function to perform dfs and update the tree # such that every node's weight is the sum of # the weights of all the nodes in the sub-tree # of the current node including itself def dfs(node, parent): global mini, graph, weight, ans for to in graph[node]: if (to = = parent): continue dfs(to, node) # Calculating the weighted # sum of the subtree weight[node] + = weight[to] # Function to find the node # having minimum sub-tree sum def findMin(n): global mini, graph, weight, ans # For every node for i in range ( 1 , n + 1 ): # If current node's weight # is minimum so far if (mini > weight[i]): mini = weight[i] ans = i # Driver code n = 5 # Weights of the node weight[ 1 ] = - 1 weight[ 2 ] = 5 weight[ 3 ] = - 1 weight[ 4 ] = 3 weight[ 5 ] = - 2 # Edges of the tree graph[ 1 ].append( 2 ) graph[ 2 ].append( 3 ) graph[ 2 ].append( 4 ) graph[ 1 ].append( 5 ) dfs( 1 , 1 ) findMin(n) print (ans) # This code is contributed by SHUBHAMSINGH10 |
Javascript
<script> // Javascript implementation of the approach let ans = 0; let mini = Number.MAX_VALUE; let graph = new Array(100); let weight = new Array(100); for (let i = 0; i < 100; i++) { graph[i] = []; weight[i] = 0; } // Function to perform dfs and update the tree // such that every node's weight is the sum of // the weights of all the nodes in the sub-tree // of the current node including itself function dfs(node, parent) { for (let to = 0; to < graph[node].length; to++) { if (graph[node][to] == parent) continue dfs(graph[node][to], node); // Calculating the weighted // sum of the subtree weight[node] += weight[graph[node][to]]; } } // Function to find the node // having minimum sub-tree sum function findMin(n) { // For every node for (let i = 1; i <= n; i++) { // If current node's weight // is minimum so far if (mini > weight[i]) { mini = weight[i]; ans = i; } } } // Driver code let n = 5; // Weights of the node weight[1] = -1; weight[2] = 5; weight[3] = -1; weight[4] = 3; weight[5] = -2; // Edges of the tree graph[1].push(2); graph[2].push(3); graph[2].push(4); graph[1].push(5); dfs(1, 1); findMin(n); document.write(ans); // This code is contributed by Dharanendra L V. </script> |
5
Complexity Analysis:
- Time Complexity : O(N).
In dfs, every node of the tree is processed once and hence the complexity due to the dfs is O(N) if there are total N nodes in the tree. Therefore, the time complexity is O(N). - Auxiliary Space : O(n).
Recursion stack.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!