Sunday, November 17, 2024
Google search engine
HomeData Modelling & AIFind the number of pair of Ideal nodes in a given tree

Find the number of pair of Ideal nodes in a given tree

Given a tree of N nodes and an integer K, each node is numbered between 1 and N. The task is to find the number of pairs of ideal nodes in a tree. 

A pair of nodes (a, b) is called ideal if 

  1. a is an ancestor of b.
  2. And, abs(a – b) ? K

Examples: 

Input:

K = 2
Output: 4
(1, 2), (1, 3), (3, 4), (3, 5) are such pairs.

Input: Consider the graph in example 1 and k = 3
Output: 6
(1, 2), (1, 3), (1, 4), (3, 4), (3, 5), (3, 6) are such pairs.

Approach: First, we need to traverse the tree using DFS so we need to find the root node, the node without a parent. As we traverse each node we will store it in a data structure to keep track of all the ancestors for the next node. Before doing that, get the number of the node’s ancestors in the range [presentNode – k, presentNode + k] then add it to the total pairs. 
We need a data structure which can: 

  1. Insert a node as we traverse the tree.
  2. Remove a node as we return.
  3. Give the number of nodes within the range [presentNode – k, PresentNode + k] which were stored.

Binary indexed tree fulfills the above three operations.
We can do the above 3 operations by initializing all the index values of the BIT to 0 and then: 

  1. Insert a node by updating the index of that node to 1.
  2. Remove a node by updating the index of that node to 0.
  3. Get the number of similar pairs of the ancestor of that node by querying for the sum of the range [presentNode – k, PresentNode + k]

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
#define N 100005
 
int n, k;
 
// Adjacency list
vector<int> al[N];
long long Ideal_pair;
long long bit[N];
bool root_node[N];
 
// bit : bit array
// i and j are starting and
// ending index INCLUSIVE
long long bit_q(int i, int j)
{
    long long sum = 0ll;
    while (j > 0) {
        sum += bit[j];
        j -= (j & (j * -1));
    }
    i--;
    while (i > 0) {
        sum -= bit[i];
        i -= (i & (i * -1));
    }
    return sum;
}
 
// bit : bit array
// n : size of bit array
// i is the index to be updated
// diff is (new_val - old_val)
void bit_up(int i, long long diff)
{
    while (i <= n) {
        bit[i] += diff;
        i += i & -i;
    }
}
 
// DFS function to find ideal pairs
void dfs(int node)
{
    Ideal_pair += bit_q(max(1, node - k),
                        min(n, node + k));
    bit_up(node, 1);
    for (int i = 0; i < al[node].size(); i++)
        dfs(al[node][i]);
    bit_up(node, -1);
}
 
// Function for initialisation
void initialise()
{
    Ideal_pair = 0;
    for (int i = 0; i <= n; i++) {
        root_node[i] = true;
        bit[i] = 0LL;
    }
}
 
// Function to add an edge
void Add_Edge(int x, int y)
{
    al[x].push_back(y);
    root_node[y] = false;
}
 
// Function to find number of ideal pairs
long long Idealpairs()
{
    // Find root of the tree
    int r = -1;
    for (int i = 1; i <= n; i++)
        if (root_node[i]) {
            r = i;
            break;
        }
 
    dfs(r);
 
    return Ideal_pair;
}
 
// Driver code
int main()
{
    n = 6, k = 3;
 
    initialise();
 
    // Add edges
    Add_Edge(1, 2);
    Add_Edge(1, 3);
    Add_Edge(3, 4);
    Add_Edge(3, 5);
    Add_Edge(3, 6);
 
    // Function call
    cout << Idealpairs();
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG{
     
static final int N  = 100005;
 
static int n, k;
 
// Adjacency list
@SuppressWarnings("unchecked")
static Vector<Integer> []al = new Vector[N];
static long Ideal_pair;
static long []bit = new long[N];
static boolean []root_node = new boolean[N];
 
// bit : bit array
// i and j are starting and
// ending index INCLUSIVE
static long bit_q(int i, int j)
{
    long sum = 0;
    while (j > 0)
    {
        sum += bit[j];
        j -= (j & (j * -1));
    }
    i--;
    while (i > 0)
    {
        sum -= bit[i];
        i -= (i & (i * -1));
    }
    return sum;
}
 
// bit : bit array
// n : size of bit array
// i is the index to be updated
// diff is (new_val - old_val)
static void bit_up(int i, long diff)
{
    while (i <= n)
    {
        bit[i] += diff;
        i += i & -i;
    }
}
 
// DFS function to find ideal pairs
static void dfs(int node)
{
    Ideal_pair += bit_q(Math.max(1, node - k),
                        Math.min(n, node + k));
    bit_up(node, 1);
     
    for(int i = 0; i < al[node].size(); i++)
        dfs(al[node].get(i));
         
    bit_up(node, -1);
}
 
// Function for initialisation
static void initialise()
{
    Ideal_pair = 0;
    for (int i = 0; i <= n; i++) {
        root_node[i] = true;
        bit[i] = 0;
    }
}
 
// Function to add an edge
static void Add_Edge(int x, int y)
{
    al[x].add(y);
    root_node[y] = false;
}
 
// Function to find number of ideal pairs
static long Idealpairs()
{
     
    // Find root of the tree
    int r = -1;
    for(int i = 1; i <= n; i++)
        if (root_node[i])
        {
            r = i;
            break;
        }
 
    dfs(r);
 
    return Ideal_pair;
}
 
// Driver code
public static void main(String[] args)
{
    n = 6;
    k = 3;
     
    for(int i = 0; i < al.length; i++)
        al[i] = new Vector<Integer>();
         
    initialise();
 
    // Add edges
    Add_Edge(1, 2);
    Add_Edge(1, 3);
    Add_Edge(3, 4);
    Add_Edge(3, 5);
    Add_Edge(3, 6);
 
    // Function call
    System.out.print(Idealpairs());
}
}
 
// This code is contributed by Amit Katiyar


Python3




# Python3 implementation of the approach
N = 100005
Ideal_pair = 0
 
# Adjacency list
al = [[] for i in range(100005)]
bit = [0 for i in range(N)]
root_node = [0 for i in range(N)]
 
# bit : bit array
# i and j are starting and
# ending index INCLUSIVE
def bit_q(i, j):
    sum = 0
    while (j > 0):
        sum += bit[j]
        j -= (j & (j * -1))
     
    i -= 1
    while (i > 0):
        sum -= bit[i]
        i -= (i & (i * -1))
    return sum
 
# bit : bit array
# n : size of bit array
# i is the index to be updated
# diff is (new_val - old_val)
def bit_up(i, diff):
    while (i <= n):
        bit[i] += diff
        i += i & -i
 
# DFS function to find ideal pairs
def dfs(node, x):
    Ideal_pair = x
    Ideal_pair += bit_q(max(1, node - k),
                        min(n, node + k))
    bit_up(node, 1)
    for i in range(len(al[node])):
        Ideal_pair = dfs(al[node][i], Ideal_pair)
    bit_up(node, -1)
     
    return Ideal_pair
     
# Function for initialisation
def initialise():
    Ideal_pair = 0;
    for i in range(n + 1):
        root_node[i] = True
        bit[i] = 0
 
# Function to add an edge
def Add_Edge(x, y):
    al[x].append(y)
    root_node[y] = False
 
# Function to find number of ideal pairs
def Idealpairs():
     
    # Find root of the tree
    r = -1
    for i in range(1, n + 1, 1):
        if (root_node[i]):
            r = i
            break
 
    Ideal_pair = dfs(r, 0)
 
    return Ideal_pair
 
# Driver code
if __name__ == '__main__':
    n = 6
    k = 3
 
    initialise()
 
    # Add edges
    Add_Edge(1, 2)
    Add_Edge(1, 3)
    Add_Edge(3, 4)
    Add_Edge(3, 5)
    Add_Edge(3, 6)
 
    # Function call
    print(Idealpairs())
 
# This code is contributed by
# Surendra_Gangwar


C#




// C# implementation of the
// above approach
using System;
using System.Collections.Generic;
class GFG{
     
static readonly int N  = 100005;
 
static int n, k;
 
// Adjacency list
static List<int> []al =
       new List<int>[N];
static long Ideal_pair;
static long []bit =
       new long[N];
static bool []root_node =
       new bool[N];
 
// bit : bit array
// i and j are starting and
// ending index INCLUSIVE
static long bit_q(int i,
                  int j)
{
  long sum = 0;
  while (j > 0)
  {
    sum += bit[j];
    j -= (j & (j * -1));
  }
  i--;
  while (i > 0)
  {
    sum -= bit[i];
    i -= (i & (i * -1));
  }
  return sum;
}
 
// bit : bit array
// n : size of bit array
// i is the index to be updated
// diff is (new_val - old_val)
static void bit_up(int i,
                   long diff)
{
  while (i <= n)
  {
    bit[i] += diff;
    i += i & -i;
  }
}
 
// DFS function to find
// ideal pairs
static void dfs(int node)
{
  Ideal_pair += bit_q(Math.Max(1,
                               node - k),
                      Math.Min(n,
                               node + k));
  bit_up(node, 1);
 
  for(int i = 0;
          i < al[node].Count; i++)
    dfs(al[node][i]);
 
  bit_up(node, -1);
}
 
// Function for
// initialisation
static void initialise()
{
  Ideal_pair = 0;
  for (int i = 0; i <= n; i++)
  {
    root_node[i] = true;
    bit[i] = 0;
  }
}
 
// Function to add an edge
static void Add_Edge(int x,
                     int y)
{
  al[x].Add(y);
  root_node[y] = false;
}
 
// Function to find number
// of ideal pairs
static long Idealpairs()
{    
  // Find root of the tree
  int r = -1;
   
  for(int i = 1; i <= n; i++)
    if (root_node[i])
    {
      r = i;
      break;
    }
 
  dfs(r);
  return Ideal_pair;
}
 
// Driver code
public static void Main(String[] args)
{
  n = 6;
  k = 3;
 
  for(int i = 0; i < al.Length; i++)
    al[i] = new List<int>();
 
  initialise();
 
  // Add edges
  Add_Edge(1, 2);
  Add_Edge(1, 3);
  Add_Edge(3, 4);
  Add_Edge(3, 5);
  Add_Edge(3, 6);
 
  // Function call
  Console.Write(Idealpairs());
}
}
 
// This code is contributed by Amit Katiyar


Javascript




<script>
// Javascript implementation of the approach
let N = 100005;
let n, k;
 
// Adjacency list
let al = new Array(N).fill(0).map((t) => []);
let Ideal_pair;
let bit = new Array(N);
let root_node = new Array(N);
 
// bit : bit array
// i and j are starting and
// ending index INCLUSIVE
function bit_q(i, j) {
    let sum = 0;
    while (j > 0) {
        sum += bit[j];
        j -= (j & (j * -1));
    }
    i--;
    while (i > 0) {
        sum -= bit[i];
        i -= (i & (i * -1));
    }
    return sum;
}
 
// bit : bit array
// n : size of bit array
// i is the index to be updated
// diff is (new_val - old_val)
function bit_up(i, diff) {
    while (i <= n) {
        bit[i] += diff;
        i += i & -i;
    }
}
 
// DFS function to find ideal pairs
function dfs(node) {
    Ideal_pair += bit_q(Math.max(1, node - k),
        Math.min(n, node + k));
    bit_up(node, 1);
    for (let i = 0; i < al[node].length; i++)
        dfs(al[node][i]);
    bit_up(node, -1);
}
 
// Function for initialisation
function initialise() {
    Ideal_pair = 0;
    for (let i = 0; i <= n; i++) {
        root_node[i] = true;
        bit[i] = 0;
    }
}
 
// Function to add an edge
function Add_Edge(x, y) {
    al[x].push(y);
    root_node[y] = false;
}
 
// Function to find number of ideal pairs
function Idealpairs() {
    // Find root of the tree
    let r = -1;
    for (let i = 1; i <= n; i++)
        if (root_node[i]) {
            r = i;
            break;
        }
 
    dfs(r);
 
    return Ideal_pair;
}
 
// Driver code
n = 6, k = 3;
initialise();
 
// Add edges
Add_Edge(1, 2);
Add_Edge(1, 3);
Add_Edge(3, 4);
Add_Edge(3, 5);
Add_Edge(3, 6);
 
// Function call
document.write(Idealpairs());
 
// This code is contributed by _saurabh_jaiswal
</script>


Output: 

6

 

Time Complexity: O(N*log(N))
Auxiliary Space: O(N) 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments