Tuesday, November 19, 2024
Google search engine
HomeData Modelling & AIFind the minimum difference path from (0, 0) to (N-1, M-1)

Find the minimum difference path from (0, 0) to (N-1, M-1)

Given two 2D arrays b[][] and c[][] of N rows and M columns. The task is to minimise the absolute difference of the sum of b[i][j]s and the sum of c[i][j]s along the path from (0, 0) to (N – 1, M – 1).
Examples: 

Input: b[][] = {{1, 4}, {2, 4}}, c[][] = {{3, 2}, {3, 1}} 
Output:
Choose path (0, 0) -> (1, 0) -> (1, 1) 
sum of b[i][j]s are = 1 + 2 + 4 = 7 
sum of c[i][j]s are = 3 + 3 + 1 = 7 
absolute difference is zero
Input: b[][] = {{1, 10, 50}, {50, 10, 1}}, c[][] = {{1, 2, 3}, {4, 5, 6}} 
Output:
 

 

Approach: The answer is independent from the order of deciding b[i][j] and c[i][j] and the path. So let’s consider a boolean table such that dp[i][j][k] will be true if (i, j) can be reached with minimum difference of k
If it is true then for the cell (i + 1, j) it is either k + |bi+1, j – ci+1, j| or |k – |bi+1, j – ci+1, j||. The same is true for square (i, j + 1). Therefore, the table can be filled in the increasing order of i and j.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
#define MAXI 50
 
int dp[MAXI][MAXI][MAXI * MAXI];
int n, m;
 
// Function to return the minimum difference
// path from (0, 0) to (N - 1, M - 1)
int minDifference(int x, int y, int k,
                  vector<vector<int> > b,
                  vector<vector<int> > c)
{
 
    // Terminating case
    if (x >= n or y >= m)
        return INT_MAX;
 
    // Base case
    if (x == n - 1 and y == m - 1) {
        int diff = b[x][y] - c[x][y];
 
        return min(abs(k - diff), abs(k + diff));
    }
 
    int& ans = dp[x][y][k];
 
    // If it is already visited
    if (ans != -1)
        return ans;
 
    ans = INT_MAX;
 
    int diff = b[x][y] - c[x][y];
 
    // Recursive calls
    ans = min(ans, minDifference(x + 1, y,
                                 abs(k + diff), b, c));
    ans = min(ans, minDifference(x, y + 1,
                                 abs(k + diff), b, c));
 
    ans = min(ans, minDifference(x + 1, y,
                                 abs(k - diff), b, c));
    ans = min(ans, minDifference(x, y + 1,
                                 abs(k - diff), b, c));
 
    // Return the value
    return ans;
}
 
// Driver code
int main()
{
    n = 2, m = 2;
 
    vector<vector<int> > b = { { 1, 4 }, { 2, 4 } };
 
    vector<vector<int> > c = { { 3, 2 }, { 3, 1 } };
 
    memset(dp, -1, sizeof(dp));
 
    // Function call
    cout << minDifference(0, 0, 0, b, c);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
    final static int MAXI = 50 ;
     
    static int dp[][][] = new int[MAXI][MAXI][MAXI * MAXI];
    static int n, m;
    final static int INT_MAX = Integer.MAX_VALUE;
     
    // Function to return the minimum difference
    // path from (0, 0) to (N - 1, M - 1)
    static int minDifference(int x, int y, int k,
                             int b[][], int c[][])
    {
     
        // Terminating case
        if (x >= n || y >= m)
            return INT_MAX;
     
        // Base case
        if (x == n - 1 && y == m - 1)
        {
            int diff = b[x][y] - c[x][y];
     
            return Math.min(Math.abs(k - diff),
                            Math.abs(k + diff));
        }
     
        int ans = dp[x][y][k];
     
        // If it is already visited
        if (ans != -1)
            return ans;
     
        ans = INT_MAX;
     
        int diff = b[x][y] - c[x][y];
     
        // Recursive calls
        ans = Math.min(ans, minDifference(x + 1, y,
              Math.abs(k + diff), b, c));
         
        ans = Math.min(ans, minDifference(x, y + 1,
              Math.abs(k + diff), b, c));
     
        ans = Math.min(ans, minDifference(x + 1, y,
              Math.abs(k - diff), b, c));
        ans = Math.min(ans, minDifference(x, y + 1,
              Math.abs(k - diff), b, c));
     
        // Return the value
        return ans;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        n = 2; m = 2;
     
        int b[][] = { { 1, 4 }, { 2, 4 } };
     
        int c[][] = { { 3, 2 }, { 3, 1 } };
     
        for(int i = 0; i < MAXI; i++)
        {
            for(int j = 0; j < MAXI; j++)
            {
                for(int k = 0; k < MAXI * MAXI; k++)
                {
                    dp[i][j][k] = -1;
                }
            }
        }
     
        // Function call
        System.out.println(minDifference(0, 0, 0, b, c));
    }
}
 
// This code is contributed by AnkitRai01


Python3




# Python3 implementation of the approach
import numpy as np
import sys
 
MAXI = 50
 
INT_MAX = sys.maxsize
 
dp = np.ones((MAXI, MAXI, MAXI * MAXI));
dp *= -1
 
# Function to return the minimum difference
# path from (0, 0) to (N - 1, M - 1)
def minDifference(x, y, k, b, c) :
 
    # Terminating case
    if (x >= n or y >= m) :
        return INT_MAX;
 
    # Base case
    if (x == n - 1 and y == m - 1) :
        diff = b[x][y] - c[x][y];
 
        return min(abs(k - diff), abs(k + diff));
 
    ans = dp[x][y][k];
 
    # If it is already visited
    if (ans != -1) :
        return ans;
 
    ans = INT_MAX;
 
    diff = b[x][y] - c[x][y];
 
    # Recursive calls
    ans = min(ans, minDifference(x + 1, y,
                      abs(k + diff), b, c));
     
    ans = min(ans, minDifference(x, y + 1,
                    abs(k + diff), b, c));
 
    ans = min(ans, minDifference(x + 1, y,
                    abs(k - diff), b, c));
     
    ans = min(ans, minDifference(x, y + 1,
                    abs(k - diff), b, c));
 
    # Return the value
    return ans;
 
# Driver code
if __name__ == "__main__" :
 
    n = 2; m = 2; b = [ [ 1, 4 ], [ 2, 4 ] ];
 
    c = [ [ 3, 2 ], [ 3, 1 ] ];
 
    # Function call
    print(minDifference(0, 0, 0, b, c));
 
# This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;
 
class GFG
{
    static int MAXI = 50 ;
     
    static int [,,]dp = new int[MAXI, MAXI,
                                MAXI * MAXI];
    static int n, m;
    static int INT_MAX = int.MaxValue;
     
    // Function to return the minimum difference
    // path from (0, 0) to (N - 1, M - 1)
    static int minDifference(int x, int y, int k,
                             int [,]b, int [,]c)
    {
        int diff = 0;
     
        // Terminating case
        if (x >= n || y >= m)
            return INT_MAX;
     
        // Base case
        if (x == n - 1 && y == m - 1)
        {
            diff = b[x, y] - c[x, y];
     
            return Math.Min(Math.Abs(k - diff),
                            Math.Abs(k + diff));
        }
     
        int ans = dp[x, y, k];
     
        // If it is already visited
        if (ans != -1)
            return ans;
     
        ans = INT_MAX;
     
        diff = b[x, y] - c[x, y];
     
        // Recursive calls
        ans = Math.Min(ans, minDifference(x + 1, y,
              Math.Abs(k + diff), b, c));
         
        ans = Math.Min(ans, minDifference(x, y + 1,
              Math.Abs(k + diff), b, c));
     
        ans = Math.Min(ans, minDifference(x + 1, y,
              Math.Abs(k - diff), b, c));
         
        ans = Math.Min(ans, minDifference(x, y + 1,
              Math.Abs(k - diff), b, c));
     
        // Return the value
        return ans;
    }
     
    // Driver code
    public static void Main ()
    {
        n = 2; m = 2;
     
        int [,]b = { { 1, 4 }, { 2, 4 } };
     
        int [,]c = { { 3, 2 }, { 3, 1 } };
     
        for(int i = 0; i < MAXI; i++)
        {
            for(int j = 0; j < MAXI; j++)
            {
                for(int k = 0; k < MAXI * MAXI; k++)
                {
                    dp[i, j, k] = -1;
                }
            }
        }
     
        // Function call
        Console.WriteLine(minDifference(0, 0, 0, b, c));
    }
}
 
// This code is contributed by AnkitRai01


Javascript




<script>
 
    // JavaScript implementation of the approach
     
    let MAXI = 50 ;
       
    let dp = new Array(MAXI);
    let n, m;
    let INT_MAX = Number.MAX_VALUE;
       
    // Function to return the minimum difference
    // path from (0, 0) to (N - 1, M - 1)
    function minDifference(x, y, k, b, c)
    {
       
        // Terminating case
        if (x >= n || y >= m)
            return INT_MAX;
       
        // Base case
        if (x == n - 1 && y == m - 1)
        {
            let diff = b[x][y] - c[x][y];
       
            return Math.min(Math.abs(k - diff),
                            Math.abs(k + diff));
        }
       
        let ans = dp[x][y][k];
       
        // If it is already visited
        if (ans != -1)
            return ans;
       
        ans = INT_MAX;
       
        let diff = b[x][y] - c[x][y];
       
        // Recursive calls
        ans = Math.min(ans, minDifference(x + 1, y,
              Math.abs(k + diff), b, c));
           
        ans = Math.min(ans, minDifference(x, y + 1,
              Math.abs(k + diff), b, c));
       
        ans = Math.min(ans, minDifference(x + 1, y,
              Math.abs(k - diff), b, c));
        ans = Math.min(ans, minDifference(x, y + 1,
              Math.abs(k - diff), b, c));
       
        // Return the value
        return ans;
    }
     
    n = 2; m = 2;
       
    let b = [ [ 1, 4 ], [ 2, 4 ] ];
 
    let c = [ [ 3, 2 ], [ 3, 1 ] ];
 
    for(let i = 0; i < MAXI; i++)
    {
      dp[i] = new Array(MAXI);
      for(let j = 0; j < MAXI; j++)
      {
          dp[i][j] = new Array(MAXI * MAXI);
        for(let k = 0; k < MAXI * MAXI; k++)
        {
          dp[i][j][k] = -1;
        }
      }
    }
 
    // Function call
    document.write(minDifference(0, 0, 0, b, c));
     
</script>


Output: 

0

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments