Given a 2-D array of size N*M where, . The task is to find the maximum value achievable by a + shaped pattern. The elements of the array can be negative.
The plus(+) shape pattern is formed by taking any element with co-ordinate (x, y) as a center and then expanding it in all four directions(if possible).
A plus(+) shape has atleast five elements which are { (x-1, y), (x, y-1), (x, y), (x+1, y), (x, y+1) } i.e. the arms should have length>1 but not necessarily need to have same length.
Examples:
Input: N = 3, M = 4 1 1 1 1 -6 1 1 -4 1 1 1 1 Output: 0 Here, (x, y)=(2, 3) center of pattern(+). Other four arms are, left arm = (2, 2), right arm = (2, 4), up arm = (1, 3), down arm = (2, 3). Hence sum of all elements are ( 1 + 1 + (-4) + 1 + 1 ) = 0. Input: N = 5, M = 3 1 2 3 -6 1 -4 1 1 1 7 8 9 6 3 2 Output: 31
Approach: This problem is an application of the standard Largest Sum Contiguous Subarray.
We quickly pre-compute the maximum contiguous sub-sequence (subarray) sum for each row and column, in 4 directions, namely, Up, Down, Left and Right. This can be done using the standard Maximum contiguous sub-sequence sum of a 1-D array.
We make four 2-D array’s 1 for each direction.
- up[i][j]– Maximum sum contiguous sub-sequence of elements in upward direction, from rows 1, 2, 3, …, i More formally, it represents the maximum sum obtained by adding a contiguous sub-sequence of elements from list of arr[1][j], arr[2][j], …, arr[i][j]
- down[i][j] -Maximum sum contiguous sub-sequence of elements in downward direction, from rows i, i+1, i+2,,…, N More formally, it represents the maximum sum obtained by adding a contiguous sub-sequence of elements from list of arr[i][j], arr[i+1][j], …, arr[N][j]
- left[i][j]– Maximum sum contiguous sub-sequence of elements in left direction, from columns 1, 2, 3, …, j More formally, it represents the maximum sum obtained by adding a contiguous sub-sequence of elements from list of arr[i][1], arr[i][2], …, arr[i][j]
- right[i][j]– Maximum sum contiguous sub-sequence of elements in right direction, from columns j, j+1, j+2, …, M More formally, it represents the maximum sum obtained by adding a contiguous sub-sequence of elements from list of arr[i][j], arr[i][j+1], …, arr[i][M]
All that’s left is, to check each cell as a possible center of the + and use pre-computed data to find the value achieved by + shape in O(1).
Below is the implementation of the above approach:
C++
// C++ program to find the maximum value // of a + shaped pattern in 2-D array #include <bits/stdc++.h> using namespace std; #define N 100 const int n = 3, m = 4; // Function to return maximum Plus value int maxPlus( int (&arr)[n][m]) { // Initializing answer with the minimum value int ans = INT_MIN; // Initializing all four arrays int left[N][N], right[N][N], up[N][N], down[N][N]; // Initializing left and up array. for ( int i = 0; i < n; i++) { for ( int j = 0; j < m; j++) { left[i][j] = max(0LL, (j ? left[i][j - 1] : 0LL)) + arr[i][j]; up[i][j] = max(0LL, (i ? up[i - 1][j] : 0LL)) + arr[i][j]; } } // Initializing right and down array. for ( int i = 0; i < n; i++) { for ( int j = 0; j < m; j++) { right[i][j] = max(0LL, (j + 1 == m ? 0LL: right[i][j + 1])) + arr[i][j]; down[i][j] = max(0LL, (i + 1 == n ? 0LL: down[i + 1][j])) + arr[i][j]; } } // calculating value of maximum Plus (+) sign for ( int i = 1; i < n - 1; ++i) for ( int j = 1; j < m - 1; ++j) ans = max(ans, up[i - 1][j] + down[i + 1][j] + left[i][j - 1] + right[i][j + 1] + arr[i][j]); return ans; } // Driver code int main() { int arr[n][m] = { { 1, 1, 1, 1 }, { -6, 1, 1, -4 }, { 1, 1, 1, 1 } }; // Function call to find maximum value cout << maxPlus(arr); return 0; } |
Java
// Java program to find the maximum value // of a + shaped pattern in 2-D array class GFG { public static int N = 100 ; public static int n = 3 , m = 4 ; // Function to return maximum Plus value public static int maxPlus( int [][] arr) { // Initializing answer with the minimum value int ans = Integer.MIN_VALUE; // Initializing all four arrays int [][] left = new int [N][N]; int [][] right = new int [N][N]; int [][] up = new int [N][N]; int [][] down = new int [N][N]; // Initializing left and up array. for ( int i = 0 ; i < n; i++) { for ( int j = 0 ; j < m; j++) { left[i][j] = Math.max( 0 , ((j != 0 ) ? left[i][j - 1 ] : 0 )) + arr[i][j]; up[i][j] = Math.max( 0 , ((i != 0 )? up[i - 1 ][j] : 0 )) + arr[i][j]; } } // Initializing right and down array. for ( int i = 0 ; i < n; i++) { for ( int j = 0 ; j < m; j++) { right[i][j] = Math.max( 0 , (j + 1 == m ? 0 : right[i][j + 1 ])) + arr[i][j]; down[i][j] = Math.max( 0 , (i + 1 == n ? 0 : down[i + 1 ][j])) + arr[i][j]; } } // calculating value of maximum Plus (+) sign for ( int i = 1 ; i < n - 1 ; ++i) for ( int j = 1 ; j < m - 1 ; ++j) ans = Math.max(ans, up[i - 1 ][j] + down[i + 1 ][j] + left[i][j - 1 ] + right[i][j + 1 ] + arr[i][j]); return ans; } // Driver code public static void main(String[] args) { int [][] arr = new int [][]{ { 1 , 1 , 1 , 1 }, { - 6 , 1 , 1 , - 4 }, { 1 , 1 , 1 , 1 } }; // Function call to find maximum value System.out.println( maxPlus(arr) ); } } // This code is contributed by PrinciRaj1992. |
Python 3
# Python 3 program to find the maximum value # of a + shaped pattern in 2-D array N = 100 n = 3 m = 4 # Function to return maximum # Plus value def maxPlus(arr): # Initializing answer with # the minimum value ans = 0 # Initializing all four arrays left = [[ 0 for x in range (N)] for y in range (N)] right = [[ 0 for x in range (N)] for y in range (N)] up = [[ 0 for x in range (N)] for y in range (N)] down = [[ 0 for x in range (N)] for y in range (N)] # Initializing left and up array. for i in range (n) : for j in range (m) : left[i][j] = ( max ( 0 , (left[i][j - 1 ] if j else 0 )) + arr[i][j]) up[i][j] = ( max ( 0 , (up[i - 1 ][j] if i else 0 )) + arr[i][j]) # Initializing right and down array. for i in range (n) : for j in range (m) : right[i][j] = max ( 0 , ( 0 if (j + 1 = = m ) else right[i][j + 1 ])) + arr[i][j] down[i][j] = max ( 0 , ( 0 if (i + 1 = = n ) else down[i + 1 ][j])) + arr[i][j] # calculating value of maximum # Plus (+) sign for i in range ( 1 , n - 1 ): for j in range ( 1 , m - 1 ): ans = max (ans, up[i - 1 ][j] + down[i + 1 ][j] + left[i][j - 1 ] + right[i][j + 1 ] + arr[i][j]) return ans # Driver code if __name__ = = "__main__" : arr = [[ 1 , 1 , 1 , 1 ], [ - 6 , 1 , 1 , - 4 ], [ 1 , 1 , 1 , 1 ]] # Function call to find maximum value print (maxPlus(arr)) # This code is contributed # by ChitraNayal |
C#
// C# program to find the maximum value // of a + shaped pattern in 2-D array using System; class GFG { public static int N = 100; public static int n = 3, m = 4; // Function to return maximum Plus value public static int maxPlus( int [,] arr) { // Initializing answer with the minimum value int ans = int .MinValue; // Initializing all four arrays int [,] left = new int [N,N]; int [,] right = new int [N,N]; int [,] up = new int [N,N]; int [,] down = new int [N,N]; // Initializing left and up array. for ( int i = 0; i < n; i++) { for ( int j = 0; j < m; j++) { left[i,j] = Math.Max(0, ((j != 0) ? left[i,j - 1] : 0)) + arr[i,j]; up[i,j] = Math.Max(0, ((i != 0)? up[i - 1,j] : 0)) + arr[i,j]; } } // Initializing right and down array. for ( int i = 0; i < n; i++) { for ( int j = 0; j < m; j++) { right[i,j] = Math.Max(0, (j + 1 == m ? 0: right[i,j + 1])) + arr[i,j]; down[i,j] = Math.Max(0, (i + 1 == n ? 0: down[i + 1,j])) + arr[i,j]; } } // calculating value of maximum Plus (+) sign for ( int i = 1; i < n - 1; ++i) for ( int j = 1; j < m - 1; ++j) ans = Math.Max(ans, up[i - 1,j] + down[i + 1,j] + left[i,j - 1] + right[i,j + 1] + arr[i,j]); return ans; } // Driver code static void Main() { int [,] arr = new int [,]{ { 1, 1, 1, 1 }, { -6, 1, 1, -4 }, { 1, 1, 1, 1 } }; // Function call to find maximum value Console.Write( maxPlus(arr) ); } } // This code is contributed by DrRoot_ |
Javascript
<script> // JavaScript program to find the maximum value // of a + shaped pattern in 2-D array let N = 100; let n = 3, m = 4; //Function to return maximum Plus value function maxPlus(arr) { // Initializing answer with the minimum value let ans = 0; // Initializing all four arrays let left = new Array(N); let right = new Array(N); let up = new Array(N); let down = new Array(N); for (let i=0;i<N;i++) { left[i]= new Array(N); right[i]= new Array(N); up[i]= new Array(N); down[i]= new Array(N); for (let j=0;j<N;j++) { left[i][j]=0; right[i][j]=0; up[i][j]=0; down[i][j]=0; } } // Initializing left and up array. for (let i = 0; i < n; i++) { for (let j = 0; j < m; j++) { left[i][j] = Math.max(0, ((j != 0) ? left[i][j - 1] : 0)) + arr[i][j]; up[i][j] = Math.max(0, ((i != 0)? up[i - 1][j] : 0)) + arr[i][j]; } } // Initializing right and down array. for (let i = 0; i < n; i++) { for (let j = 0; j < m; j++) { right[i][j] = Math.max(0, (j + 1 == m ? 0: right[i][j + 1])) + arr[i][j]; down[i][j] = Math.max(0, (i + 1 == n ? 0: down[i + 1][j])) + arr[i][j]; } } // calculating value of maximum Plus (+) sign for (let i = 1; i < n - 1; ++i) for (let j = 1; j < m - 1; ++j) { ans = Math.max(ans, up[i - 1][j] + down[i + 1][j] + left[i][j - 1] + right[i][j + 1] + arr[i][j]); } return ans; } // Driver code let arr = [[ 1, 1, 1, 1 ], [ -6, 1, 1, -4 ], [ 1, 1, 1, 1 ]]; document.write(maxPlus(arr)); // This code is contributed by avanitrachhadiya2155 </script> |
0
Time Complexity: O(N*M) for given N rows and M columns
Auxiliary Space: O(N*M)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!