Given an array arr[] which is the resultant array when a number of queries are performed on the original array. The queries are of the form [l, r, x] where l is the starting index in the array, r is the ending index in the array and x is the integer elements that have to be added to all the elements in the index range [l, r]. The task is to find the original array.
Examples:
Input: arr[] = {5, 7, 8}, l[] = {0}, r[] = {1}, x[] = {2}
Output: 3 5 8
If query [0, 1, 2] is performed on the array {3, 5, 8}
The resultant array will be {5, 7, 8}Input: arr[] = {20, 30, 20, 70, 100},
l[] = {0, 1, 3},
r[] = {2, 4, 4},
x[] = {10, 20, 30}
Output: 10 0 -10 20 50
Naive Approach: For each range starting from l to r subtract the corresponding x to get the initial array.
Algorithm
1)Define the initial array arr and its size n. 2)Define the ranges l, r, and the values x for decrementing the elements in those ranges. 3)Define the number of queries q. 4)For each query j from 0 to q-1: For each index i from l[j] to r[j], decrement the corresponding element in the array arr by the value x[j]. 5)Print the elements of the final array arr.
Below is the implementation of the approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Utility function to print the contents of an array void printArr( int arr[], int n) { for ( int i = 0; i < n; i++) { cout << arr[i] << " " ; } } // Function to find the original array void findOrgArr( int arr[], int l[], int r[], int x[], int n, int q) { for ( int j = 0; j < q; j++) { for ( int i = l[j]; i <= r[j]; i++) { // Decrement elements between // l[j] and r[j] by x[j] arr[i] = arr[i] - x[j]; } } printArr(arr, n); } // Driver code int main() { // Final array int arr[] = { 20, 30, 20, 70, 100 }; // Size of the array int n = sizeof (arr) / sizeof (arr[0]); // Queries int l[] = { 0, 1, 3 }; int r[] = { 2, 4, 4 }; int x[] = { 10, 20, 30 }; // Number of queries int q = sizeof (l) / sizeof (l[0]); findOrgArr(arr, l, r, x, n, q); return 0; } |
Java
// Java implementation of the approach import java.util.*; class GFG { // Utility function to print the contents of an array static void printArr( int arr[], int n) { for ( int i = 0 ; i < n; i++) { System.out.print(arr[i]+ " " ); } } // Function to find the original array static void findOrgArr( int arr[], int l[], int r[], int x[], int n, int q) { for ( int j = 0 ; j < q; j++) { for ( int i = l[j]; i <= r[j]; i++) { // Decrement elements between // l[j] and r[j] by x[j] arr[i] = arr[i] - x[j]; } } printArr(arr, n); } // Driver code public static void main(String args[]) { // Final array int arr[] = { 20 , 30 , 20 , 70 , 100 }; // Size of the array int n = arr.length; // Queries int l[] = { 0 , 1 , 3 }; int r[] = { 2 , 4 , 4 }; int x[] = { 10 , 20 , 30 }; // Number of queries int q = l.length; findOrgArr(arr, l, r, x, n, q); } } // This code is contributed by // Shashank_Sharma |
Python3
# Python3 implementation of the approach import math as mt # Utility function to print the # contents of an array def printArr(arr, n): for i in range (n): print (arr[i], end = " " ) # Function to find the original array def findOrgArr(arr, l, r, x, n, q): for j in range (q): for i in range (l[j], r[j] + 1 ): # Decrement elements between # l[j] and r[j] by x[j] arr[i] = arr[i] - x[j] printArr(arr, n) # Driver code # Final array arr = [ 20 , 30 , 20 , 70 , 100 ] # Size of the array n = len (arr) # Queries l = [ 0 , 1 , 3 ] r = [ 2 , 4 , 4 ] x = [ 10 , 20 , 30 ] # Number of queries q = len (l) findOrgArr(arr, l, r, x, n, q) # This code is contributed by # mohit kumar 29 |
C#
// C# implementation of the approach using System; class GFG { // Utility function to print the // contents of an array static void printArr( int [] arr, int n) { for ( int i = 0; i < n; i++) { Console.Write(arr[i] + " " ); } } // Function to find the original array static void findOrgArr( int [] arr, int [] l, int [] r, int [] x, int n, int q) { for ( int j = 0; j < q; j++) { for ( int i = l[j]; i <= r[j]; i++) { // Decrement elements between // l[j] and r[j] by x[j] arr[i] = arr[i] - x[j]; } } printArr(arr, n); } // Driver code public static void Main() { // Final array int [] arr = { 20, 30, 20, 70, 100 }; // Size of the array int n = arr.Length; // Queries int [] l = { 0, 1, 3 }; int [] r = { 2, 4, 4 }; int [] x = { 10, 20, 30 }; // Number of queries int q = l.Length; findOrgArr(arr, l, r, x, n, q); } } // This code is contributed by // Akanksha Rai |
PHP
<?php // PHP implementation of the approach // Utility function to print the contents // of an array function printArr(& $arr , $n ) { for ( $i = 0; $i < $n ; $i ++) { echo ( $arr [ $i ]); echo ( " " ); } } // Function to find the original array function findOrgArr(& $arr , & $l , & $r , & $x , $n , $q ) { for ( $j = 0; $j < $q ; $j ++) { for ( $i = $l [ $j ]; $i <= $r [ $j ]; $i ++) { // Decrement elements between // l[j] and r[j] by x[j] $arr [ $i ] = $arr [ $i ] - $x [ $j ]; } } printArr( $arr , $n ); } // Driver code // Final array $arr = array (20, 30, 20, 70, 100); // Size of the array $n = sizeof( $arr ); // Queries $l = array (0, 1, 3 ); $r = array ( 2, 4, 4 ); $x = array (10, 20, 30 ); // Number of queries $q = sizeof( $l ); findOrgArr( $arr , $l , $r , $x , $n , $q ); // This code is contributed by Shivi_Aggarwal ?> |
Javascript
<script> // Javascript implementation of the approach // Utility function to print the contents of an array function printArr(arr,n) { for (let i = 0; i < n; i++) { document.write(arr[i]+ " " ); } } // Function to find the original array function findOrgArr(arr,l,r,x,n,q) { for (let j = 0; j < q; j++) { for (let i = l[j]; i <= r[j]; i++) { // Decrement elements between // l[j] and r[j] by x[j] arr[i] = arr[i] - x[j]; } } printArr(arr, n); } // Driver code // Final array let arr = [ 20, 30, 20, 70, 100 ]; // Size of the array let n = arr.length; // Queries let l = [ 0, 1, 3 ]; let r = [ 2, 4, 4 ]; let x = [ 10, 20, 30 ]; // Number of queries let q = l.length; findOrgArr(arr, l, r, x, n, q); // This code is contributed by patel2127 </script> |
10 0 -10 20 50
Complexity Analysis:
- Time Complexity: O(n2)
- Auxiliary Space: O(1)
Efficient Approach:
Follow the following steps to reach the initial array:
- Take an array b[] of the size of the given array and initialize all of its elements with 0.
- In array b[], for every query update b[l] = b[l] – x and b[r + 1] = b[r + 1] + x if r + 1 < n. This is because x will cancel out the effect of -x when performed the prefix sum.
- Take the prefix sum of array b[], and add it to the given array which will produce the initial array.
Implementation:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Utility function to print the contents of an array void printArr( int arr[], int n) { for ( int i = 0; i < n; i++) { cout << arr[i] << " " ; } } // Function to find the original array void findOrgArr( int arr[], int l[], int r[], int x[], int n, int q) { int b[n] = { 0 }; for ( int i = 0; i < q; i++) { // Decrement the element at l[i]th index by -x b[l[i]] += -x[i]; // Increment the element at (r[i] + 1)th index // by x if (r[i] + 1) is a valid index if (r[i] + 1 < n) b[r[i] + 1] += x[i]; } for ( int i = 1; i < n; i++) // Prefix sum of array b b[i] = b[i - 1] + b[i]; // Update the original array for ( int i = 0; i < n; i++) arr[i] = arr[i] + b[i]; printArr(arr, n); } // Driver code int main() { // Final array int arr[] = { 20, 30, 20, 70, 100 }; // Size of the array int n = sizeof (arr) / sizeof (arr[0]); // Queries int l[] = { 0, 1, 3 }; int r[] = { 2, 4, 4 }; int x[] = { 10, 20, 30 }; // Number of queries int q = sizeof (l) / sizeof (l[0]); findOrgArr(arr, l, r, x, n, q); return 0; } |
Java
// Java implementation of above approach class GFG{ // Utility function to print the contents of an array static void printArr( int arr[], int n) { for ( int i = 0 ; i < n; i++) { System.out.print(arr[i] + " " ) ; } } // Function to find the original array static void findOrgArr( int arr[], int l[], int r[], int x[], int n, int q) { int b[] = new int [n] ; for ( int i = 0 ; i < q; i++) b[i] = 0 ; for ( int i = 0 ; i < q; i++) { // Decrement the element at l[i]th index by -x b[l[i]] += -x[i]; // Increment the element at (r[i] + 1)th index // by x if (r[i] + 1) is a valid index if (r[i] + 1 < n) b[r[i] + 1 ] += x[i]; } for ( int i = 1 ; i < n; i++) // Prefix sum of array b b[i] = b[i - 1 ] + b[i]; // Update the original array for ( int i = 0 ; i < n; i++) arr[i] = arr[i] + b[i]; printArr(arr, n); } // Driver code public static void main(String []args) { // Final array int arr[] = { 20 , 30 , 20 , 70 , 100 }; // Size of the array int n = arr.length ; // Queries int l[] = { 0 , 1 , 3 }; int r[] = { 2 , 4 , 4 }; int x[] = { 10 , 20 , 30 }; // Number of queries int q = l.length ; findOrgArr(arr, l, r, x, n, q); } } // This code is contributed by aishwarya.27 |
Python3
# Python3 implementation of the approach # Utility function to print the contents # of an array def printArr(arr, n): for i in range (n): print (arr[i], end = " " ) # Function to find the original array def findOrgArr(arr, l, r, x, n, q): b = [ 0 for i in range (n)] for i in range (q): # Decrement the element at l[i]th # index by -x b[l[i]] + = - x[i] # Increment the element at (r[i] + 1)th # index by x if (r[i] + 1) is a valid index if (r[i] + 1 < n): b[r[i] + 1 ] + = x[i] for i in range (n): # Prefix sum of array b b[i] = b[i - 1 ] + b[i] # Update the original array for i in range (n): arr[i] = arr[i] + b[i] printArr(arr, n) # Driver code arr = [ 20 , 30 , 20 , 70 , 100 ] # Size of the array n = len (arr) # Queries l = [ 0 , 1 , 3 ] r = [ 2 , 4 , 4 ] x = [ 10 , 20 , 30 ] # Number of queries q = len (l) findOrgArr(arr, l, r, x, n, q) # This code Is contributed by # Mohit kumar 29 |
C#
// C# implementation of above approach using System; class GFG { // Utility function to print the // contents of an array static void printArr( int [] arr, int n) { for ( int i = 0; i < n; i++) { Console.Write(arr[i] + " " ); } } // Function to find the original array static void findOrgArr( int [] arr, int [] l, int [] r, int [] x, int n, int q) { int [] b = new int [n]; for ( int i = 0; i < q; i++) b[i] = 0 ; for ( int i = 0; i < q; i++) { // Decrement the element at l[i]th // index by -x b[l[i]] += -x[i]; // Increment the element at (r[i] + 1)th // index by x if (r[i] + 1) is a valid index if (r[i] + 1 < n) b[r[i] + 1] += x[i]; } for ( int i = 1; i < n; i++) // Prefix sum of array b b[i] = b[i - 1] + b[i]; // Update the original array for ( int i = 0; i < n; i++) arr[i] = arr[i] + b[i]; printArr(arr, n); } // Driver code public static void Main() { // Final array int [] arr = { 20, 30, 20, 70, 100 }; // Size of the array int n = arr.Length; // Queries int [] l = { 0, 1, 3 }; int [] r = { 2, 4, 4 }; int [] x = { 10, 20, 30 }; // Number of queries int q = l.Length; findOrgArr(arr, l, r, x, n, q); } } // This code is contributed // by Akanksha Rai |
Javascript
<script> // Javascript implementation of above approach // Utility function to print the contents of an array function printArr(arr, n) { console.log(arr.join( ' ' )) ; } // Function to find the original array function findOrgArr(arr,l,r,x,n,q) { let b = new Array(n) ; for (let i = 0; i < n; i++) b[i] = 0 ; for (let i = 0; i < q; i++) { // Decrement the element at l[i]th index by -x b[l[i]] += -x[i]; // Increment the element at (r[i] + 1)th index // by x if (r[i] + 1) is a valid index if (r[i] + 1 < n) b[r[i] + 1] += x[i]; } for (let i = 1; i < n; i++) // Prefix sum of array b b[i] = b[i - 1] + b[i]; // Update the original array for (let i = 0; i < n; i++) arr[i] = arr[i] + b[i]; printArr(arr, n); } // Driver code // Final array let arr = [ 20, 30, 20, 70, 100 ]; // Size of the array let n = arr.length ; // Queries let l = [ 0, 1, 3 ]; let r = [ 2, 4, 4 ]; let x = [ 10, 20, 30 ]; // Number of queries let q = l.length ; // Function call findOrgArr(arr, l, r, x, n, q); // This code is contributed by aarohirai2616. </script> |
10 0 -10 20 50
Complexity Analysis:
- Time Complexity: O(n)
- Auxiliary Space: O(n)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!