Wednesday, November 20, 2024
Google search engine
HomeData Modelling & AIFind the dimensions of Right angled triangle

Find the dimensions of Right angled triangle

Given H (Hypotenuse) and A (area) of a right angled triangle, find the dimensions of right angled triangle such that the hypotenuse is of length H and its area is A. If no such triangle exists, print “Not Possible”.

Examples: 

Input : H = 10, A = 24
Output : P = 6.00, B = 8.00

Input : H = 13, A = 36
Output : Not Possible

Approach: 
Before moving to exact solution, let’s do some of mathematical calculations related to properties of Right-angled triangle. 
Suppose H = Hypotenuse, P = Perpendicular, B = Base and A = Area of right angled triangle.

We have some sort of equations as :  

P^2 + B^2 = H^2
P * B = 2 * A
(P+B)^2 = P^2 + B^2 + 2*P*B = H^2 + 4*A
(P+B) = sqrt(H^2 + 4*A)  ----1
(P-B)^2 = P^2 + B^2 - 2*P*B = H^2 - 4*A
mod(P-B) = sqrt(H^2 - 4*A)  ----2
from equation (2) we can conclude that if 
H^2 < 4*A then no solution is possible.

Further from (1)+(2) and (1)-(2) we have :
P = (sqrt(H^2 + 4*A) + sqrt(H^2 - 4*A) ) / 2
B = (sqrt(H^2 + 4*A) - sqrt(H^2 - 4*A) ) / 2

Below is the implementation of above approach:  

C++




// CPP program to find dimensions of
// Right angled triangle
#include <bits/stdc++.h>
using namespace std;
 
// function to calculate dimension
void findDimen(int H, int A)
{
    // P^2+B^2 = H^2
    // P*B = 2*A
    // (P+B)^2 = P^2+B^2+2*P*B = H^2+4*A
    // (P-B)^2 = P^2+B^2-2*P*B = H^2-4*A
    // P+B = sqrt(H^2+4*A)
    // |P-B| = sqrt(H^2-4*A)
 
    if (H * H < 4 * A) {
        cout << "Not Possible\n";
        return;
    }
 
    // sqrt value of H^2 + 4A and H^2- 4A
    double apb = sqrt(H * H + 4 * A);
    double asb = sqrt(H * H - 4 * A);
 
    // Set precision
    cout.precision(2);
 
    cout << "P = " << fixed
         << (apb - asb) / 2.0 << "\n";
    cout << "B = " << (apb + asb) / 2.0;
}
 
// driver function
int main()
{
    int H = 5;
    int A = 6;
    findDimen(H, A);
    return 0;
}


Java




// Java program to find dimensions of
// Right angled triangle
class GFG {
 
    // function to calculate dimension
    static void findDimen(int H, int A)
    {
 
        // P^2+B^2 = H^2
        // P*B = 2*A
        // (P+B)^2 = P^2+B^2+2*P*B = H^2+4*A
        // (P-B)^2 = P^2+B^2-2*P*B = H^2-4*A
        // P+B = sqrt(H^2+4*A)
        // |P-B| = sqrt(H^2-4*A)
        if (H * H < 4 * A) {
            System.out.println("Not Possible");
            return;
        }
 
        // sqrt value of H^2 + 4A and H^2- 4A
        double apb = Math.sqrt(H * H + 4 * A);
        double asb = Math.sqrt(H * H - 4 * A);
 
        System.out.println("P = " + Math.round(((apb - asb) / 2.0) * 100.0) / 100.0);
        System.out.print("B = " + Math.round(((apb + asb) / 2.0) * 100.0) / 100.0);
    }
 
    // Driver function
    public static void main(String[] args)
    {
        int H = 5;
        int A = 6;
 
        findDimen(H, A);
    }
}
 
// This code is contributed by Anant Agarwal.


Python3




# Python code to find dimensions
# of Right angled triangle
 
# importing the math package
# to use sqrt function
from math import sqrt
 
# function to find the dimensions
def findDimen( H, A):
 
    # P ^ 2 + B ^ 2 = H ^ 2
    # P * B = 2 * A
    # (P + B)^2 = P ^ 2 + B ^ 2 + 2 * P*B = H ^ 2 + 4 * A
    # (P-B)^2 = P ^ 2 + B ^ 2-2 * P*B = H ^ 2-4 * A
    # P + B = sqrt(H ^ 2 + 4 * A)
    # |P-B| = sqrt(H ^ 2-4 * A)
    if H * H < 4 * A:
        print("Not Possible")
        return
 
    # sqrt value of H ^ 2 + 4A and H ^ 2- 4A
    apb = sqrt(H * H + 4 * A)
    asb = sqrt(H * H - 4 * A)
     
    # printing the dimensions
    print("P = ", "%.2f" %((apb - asb) / 2.0))
    print("B = ", "%.2f" %((apb + asb) / 2.0))
     
     
# driver code
H = 5 # assigning value to H
A = 6 # assigning value to A
findDimen(H, A) # calling function
 
# This code is contributed by "Abhishek Sharma 44"


C#




// C# program to find dimensions of
// Right angled triangle
using System;
 
class GFG {
 
    // function to calculate dimension
    static void findDimen(int H, int A)
    {
 
        // P^2+B^2 = H^2
        // P*B = 2*A
        // (P+B)^2 = P^2+B^2+2*P*B = H^2+4*A
        // (P-B)^2 = P^2+B^2-2*P*B = H^2-4*A
        // P+B = sqrt(H^2+4*A)
        // |P-B| = sqrt(H^2-4*A)
        if (H * H < 4 * A) {
            Console.WriteLine("Not Possible");
            return;
        }
 
        // sqrt value of H^2 + 4A and H^2- 4A
        double apb = Math.Sqrt(H * H + 4 * A);
        double asb = Math.Sqrt(H * H - 4 * A);
 
        Console.WriteLine("P = " + Math.Round(
          ((apb - asb) / 2.0) * 100.0) / 100.0);
           
        Console.WriteLine("B = " + Math.Round(
          ((apb + asb) / 2.0) * 100.0) / 100.0);
    }
 
    // Driver function
    public static void Main()
    {
        int H = 5;
        int A = 6;
 
        findDimen(H, A);
    }
}
 
// This code is contributed by vt_m.


PHP




<?php
// PHP program to find dimensions
// of Right angled triangle
 
// function to calculate dimension
function findDimen($H, $A)
{
     
    // P^2+B^2 = H^2
    // P*B = 2*A
    // (P+B)^2 = P^2+B^2+2*P*B = H^2+4*A
    // (P-B)^2 = P^2+B^2-2*P*B = H^2-4*A
    // P+B = sqrt(H^2+4*A)
    // |P-B| = sqrt(H^2-4*A)
    if ($H * $H < 4 * $A)
    {
        echo "Not Possible\n";
        return;
    }
 
    // sqrt value of H^2 + 4A and
    // H^2- 4A
    $apb = sqrt($H * $H + 4 * $A);
    $asb = sqrt($H * $H - 4 * $A);
 
    echo "P = " , $fixed
        , ($apb - $asb) / 2.0 , "\n";
    echo "B = " , ($apb + $asb) / 2.0;
}
 
    // Driver Code
    $H = 5;
    $A = 6;
    findDimen($H, $A);
     
// This code is contributed by vt_m.
?>


Javascript




<script>
// java script  program to find dimensions
// of Right angled triangle
 
// function to calculate dimension
function findDimen(H, A)
{
     
    // P^2+B^2 = H^2
    // P*B = 2*A
    // (P+B)^2 = P^2+B^2+2*P*B = H^2+4*A
    // (P-B)^2 = P^2+B^2-2*P*B = H^2-4*A
    // P+B = sqrt(H^2+4*A)
    // |P-B| = sqrt(H^2-4*A)
    if (H * H < 4 * A)
    {
        document.write( "Not Possible");
        return;
    }
 
    // sqrt value of H^2 + 4A and
    // H^2- 4A
    let apb = Math.sqrt(H * H + 4 * A);
    let asb = Math.sqrt(H * H - 4 * A);
 
    document.write( "P = " +((apb - asb) / 2.0).toFixed(2), "<br>");
    document.write( "B = " +((apb + asb) / 2.0).toFixed(2));
}
 
    // Driver Code
    let H = 5;
    let A = 6;
    findDimen(H, A);
// This code is contributed by Gottumukkala Bobby
</script>


Output: 

P = 3.00
B = 4.00

Time complexity : O(log(n)) since using inbuilt sqrt functions
Auxiliary Space : O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments