Tuesday, November 26, 2024
Google search engine
HomeData Modelling & AIFind the area of rhombus from given Angle and Side length

Find the area of rhombus from given Angle and Side length

Given two integers A and X, denoting the length of a side of a rhombus and an angle respectively, the task is to find the area of the rhombus.

A rhombus is a quadrilateral having 4 sides of equal length, in which both the opposite sides are parallel, and opposite angles are equal.

Examples:

Input: A = 4, X = 60
Output: 13.86

Input: A = 4, X = 30
Output: 8.0

Approach:For a Rhombus ABCD having the length of a side a and an angle x, the area of triangle ABD can be calculated using Side-Angle-Side property of triangle by the following equation:

Area of Triangle ABD = 1/2 (a2) sin x
Area of Rhombus ABCD will be double the area of ABD triangle.

Therefore, Area of Rhombus ABCD = (a2) sin x

Below is the implementation of the above approach:

C++




// C++ Program to calculate
// area of rhombus from given
// angle and side length
#include <bits/stdc++.h>
using namespace std;
 
#define RADIAN 0.01745329252
// Function to return the area of rhombus
// using one angle and side.
float Area_of_Rhombus(int a, int theta)
{
    float area = (a * a) * sin((RADIAN * theta));
    return area;
}
 
// Driver Code
int main()
{
    int a = 4;
    int theta = 60;
 
    // Function Call
    float ans = Area_of_Rhombus(a, theta);
 
    // Print the final answer
    printf("%0.2f", ans);
    return 0;
}
 
// This code is contributed by Rajput-Ji


Java




// Java Program to calculate
// area of rhombus from given
// angle and side length
class GFG{
 
static final double RADIAN = 0.01745329252;
   
// Function to return the area of rhombus
// using one angle and side.
static double Area_of_Rhombus(int a, int theta)
{
    double area = (a * a) * Math.sin((RADIAN * theta));
    return area;
}
 
// Driver Code
public static void main(String[] args)
{
    int a = 4;
    int theta = 60;
 
    // Function Call
    double ans = Area_of_Rhombus(a, theta);
 
    // Print the final answer
    System.out.printf("%.2f", ans);
}
}
 
// This code is contributed by Rajput-Ji


Python3




# Python3 Program to calculate
# area of rhombus from given
# angle and side length
   
import math 
   
# Function to return the area of rhombus
# using one angle and side. 
def Area_of_Rhombus(a, theta): 
   
    area = (a**2) * math.sin(math.radians(theta))
   
    return area 
   
# Driver Code 
a = 4
theta = 60
   
# Function Call 
ans = Area_of_Rhombus(a, theta) 
   
# Print the final answer
print(round(ans, 2))


C#




// C# Program to calculate
// area of rhombus from given
// angle and side length
using System;
class GFG{
 
static readonly double RADIAN = 0.01745329252;
   
// Function to return the area of rhombus
// using one angle and side.
static double Area_of_Rhombus(int a, int theta)
{
    double area = (a * a) * Math.Sin((RADIAN * theta));
    return area;
}
 
// Driver Code
public static void Main(String[] args)
{
    int a = 4;
    int theta = 60;
 
    // Function Call
    double ans = Area_of_Rhombus(a, theta);
 
    // Print the readonly answer
    Console.Write("{0:F2}", ans);
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
 
// Javascript Program to calculate
// area of rhombus from given
// angle and side length
    
    
// Function to return the area of rhombus
// using one angle and side.
function Area_of_Rhombus(a, theta){
    
    var area = (a**2) * Math.sin(theta *Math.PI/180);
    
    return area ;
}
    
// Driver Code
a = 4
theta = 60
    
// Function Call
ans = Area_of_Rhombus(a, theta)
    
 // Print the final answer
document.write(Math.round(ans * 100) / 100);
 
</script>


Output: 

13.86

 

Time Complexity: O(1)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments