Tuesday, November 19, 2024
Google search engine
HomeData Modelling & AIFind number of magical pairs of string of length L

Find number of magical pairs of string of length L

A pair of string s and r are called magical if for every index i the character of s is less than r i.e. s[i] < r[i]. The task is to count number of pairs of strings possible of length L. Since this value can be large, give answer modulo 109.

Note: The string contains only lowercase English alphabets.

Examples: 

Input: L = 1 
Output: 325 
Since the length of the strings required is 1. 
If s = “a” then r can be any one of “b”, “c”, “d”, … “z” (25 Possibilities) 
If s = “b” then r can be any one of “c”, “d”, “e”, … “z” (24 Possibilities) 
…. 
If s = “y” then r can only be “z” (1 Possibilities) 
s cannot be “z” as it is the maximum lowercase character. 
Hence total possibilities are 1 + 2 + 3 + … + 25 = 325

Input: L = 2 
Output: 105625 

Approach: For L = 1, total possibilities are 325
For L = 2, total possibilities are 3252
Total possibilities for any value of L will be 325L
Since this value can be large, print the answer modulo 109.

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Iterative Function to calculate (x^y)%p in O(log y)
int power(int x, unsigned int y, int p)
{
 
    // Initialize result
    int res = 1;
 
    // Update x if it is >= p
    x = x % p;
 
    while (y > 0) {
 
        // If y is odd, multiply x with result
        if (y & 1)
            res = (res * x) % p;
 
        // Y must be even now
        y = y >> 1; // y = y/2
        x = (x * x) % p;
    }
    return res;
}
 
// Driver Code
int main()
{
 
    int L = 2, P = pow(10, 9);
 
    int ans = power(325, L, P);
 
    cout << ans << "\n";
 
    return 0;
}


Java




// Java implementation of the approach
 
class GFG
{
 
    // Iterative Function to calculate (x^y)%p in O(log y)
    static int power(int x, int y, int p)
    {
 
        // Initialize result
        int res = 1;
 
        // Update x if it is >= p
        x = x % p;
 
        while (y > 0)
        {
 
            // If y is odd, multiply x with result
            if (y % 2 == 1)
            {
                res = (res * x) % p;
            }
 
            // Y must be even now
            y = y >> 1; // y = y/2
            x = (x * x) % p;
        }
        return res;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int L = 2;
        int P = (int) Math.pow(10, 9);
 
        int ans = power(325, L, P);
        System.out.println(ans);
    }
}
 
// This code has been contributed by 29AjayKumar


Python3




     
# Python implementation of the approach
  
# Iterative Function to calculate (x^y)%p in O(log y)
def power(x, y, p):
  
    # Initialize result
    res = 1;
  
    # Update x if it is >= p
    x = x % p;
  
    while (y > 0):
  
        # If y is odd, multiply x with result
        if (y %2== 1):
            res = (res * x) % p;
  
        # Y must be even now
        y = y >> 1; # y = y/2
        x = (x * x) % p;
    return res;
  
# Driver Code
L = 2; P = pow(10, 9);
ans = power(325, L, P);
print(ans);
 
 
#  This code contributed by Rajput-Ji


C#




// C# implementation of the approach
using System;
 
class GFG
{
 
    // Iterative Function to calculate (x^y)%p in O(log y)
    static int power(int x, int y, int p)
    {
 
        // Initialize result
        int res = 1;
 
        // Update x if it is >= p
        x = x % p;
 
        while (y > 0)
        {
 
            // If y is odd, multiply x with result
            if (y % 2 == 1)
            {
                res = (res * x) % p;
            }
 
            // Y must be even now
            y = y >> 1; // y = y/2
            x = (x * x) % p;
        }
        return res;
    }
 
    // Driver Code
    public static void Main()
    {
        int L = 2;
        int P = (int) Math.Pow(10, 9);
 
        int ans = power(325, L, P);
        Console.WriteLine(ans);
    }
}
 
// This code is contributed by AnkitRai01


PHP




<?php
// PHP implementation of the approach
 
// Iterative Function to calculate (x^y)%p in O(log y)
function power($x, $y, $p)
{
 
    // Initialize result
    $res = 1;
 
    // Update x if it is >= p
    $x = $x % $p;
 
    while ($y > 0)
    {
 
        // If y is odd, multiply x with result
        if ($y & 1)
            $res = ($res * $x) % $p;
 
        // Y must be even now
        $y = $y >> 1; // y = y/2
        $x = ($x * $x) % $p;
    }
    return $res;
}
 
// Driver Code
 
$L = 2;
$P = pow(10, 9);
 
$ans = power(325, $L, $P);
 
echo $ans , "\n";
 
// This code is contributed by ajit.
?>


Javascript




<script>
    // Javascript implementation of the approach
     
    // Iterative Function to calculate (x^y)%p in O(log y)
    function power(x, y, p)
    {
   
        // Initialize result
        let res = 1;
   
        // Update x if it is >= p
        x = x % p;
   
        while (y > 0)
        {
   
            // If y is odd, multiply x with result
            if (y % 2 == 1)
            {
                res = (res * x) % p;
            }
   
            // Y must be even now
            y = y >> 1; // y = y/2
            x = (x * x) % p;
        }
        return res;
    }
     
    let L = 2;
    let P = Math.pow(10, 9);
 
    let ans = power(325, L, P);
    document.write(ans);
     
</script>


Output: 

105625

 

Time Complexity: O(log (L))
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments