Monday, November 18, 2024
Google search engine
HomeData Modelling & AIFind next greater element with no consecutive 1 in it’s binary representation

Find next greater element with no consecutive 1 in it’s binary representation

Given Q queries where each query consists of an integer N and the task is to find the smallest integer greater than N such that there are no consecutive 1s in its binary representation.

Examples:  

Input: Q[] = {4, 6} 
Output: 

8

Input: Q[] = {50, 23, 456} 
Output: 
64 
32 
512 

Approach: Store all the numbers in a list whose binary representation does not contain consecutive 1s upto a fixed limit. Now for every given N, find the next greater element in the list generated previously using binary search.

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
const int MAX = 100000;
 
// To store the pre-computed integers
vector<int> v;
 
// Function that returns true if the
// binary representation of x contains
// consecutive 1s
int consecutiveOnes(int x)
{
 
    // To store the previous bit
    int p = 0;
    while (x > 0) {
 
        // Check whether the previous bit
        // and the current bit are both 1
        if (x % 2 == 1 and p == 1)
            return true;
 
        // Update previous bit
        p = x % 2;
 
        // Go to the next bit
        x /= 2;
    }
    return false;
}
 
// Function to pre-compute the
// valid numbers from 0 to MAX
void preCompute()
{
    // Store all the numbers which do
    // not have consecutive 1s
    for (int i = 0; i <= MAX; i++) {
        if (!consecutiveOnes(i))
            v.push_back(i);
    }
}
 
// Function to return the minimum
// number greater than n which does
// not contain consecutive 1s
int nextValid(int n)
{
    // Search for the next greater element
    // with no consecutive 1s
    int it = upper_bound(v.begin(),
                         v.end(), n)
             - v.begin();
    int val = v[it];
    return val;
}
 
// Function to perform the queries
void performQueries(int queries[], int q)
{
    for (int i = 0; i < q; i++)
        cout << nextValid(queries[i]) << "\n";
}
 
// Driver code
int main()
{
    int queries[] = { 4, 6 };
    int q = sizeof(queries) / sizeof(int);
 
    // Pre-compute the numbers
    preCompute();
 
    // Perform the queries
    performQueries(queries, q);
 
    return 0;
}


Java




// Java implementation of the approach
import java.io.*;
import java.util.*;
 
class GFG{
     
static int MAX = 100000;
 
// To store the pre-computed integers
static ArrayList<Integer> v = new ArrayList<Integer>();
 
public static int upper_bound(ArrayList<Integer> ar,
                              int k)
{
    int s = 0;
    int e = ar.size();
     
    while (s != e)
    {
        int mid = s + e >> 1;
         
        if (ar.get(mid) <= k)
        {
            s = mid + 1;
        }
        else
        {
            e = mid;
        }
    }
     
    if (s == ar.size())
    {
        return -1;
    }
    return s;
}
 
// Function that returns true if the
// binary representation of x contains
// consecutive 1s
static int consecutiveOnes(int x)
{
     
    // To store the previous bit
    int p = 0;
     
    while (x > 0)
    {
         
        // Check whether the previous bit
        // and the current bit are both 1
        if (x % 2 == 1 && p == 1)
        {
            return 1;
        }
         
        // Update previous bit
        p = x % 2;
         
        // Go to the next bit
        x /= 2;
    }
    return 0;
}
 
// Function to pre-compute the
// valid numbers from 0 to MAX
static void preCompute()
{
     
    // Store all the numbers which do
    // not have consecutive 1s
    for(int i = 0; i <= MAX; i++)
    {
        if (consecutiveOnes(i) == 0)
        {
            v.add(i);
        }
    }
}
 
// Function to return the minimum
// number greater than n which does
// not contain consecutive 1s
static int nextValid(int n)
{
     
    // Search for the next greater element
    // with no consecutive 1s
    int it = upper_bound(v,n);
    int val = v.get(it);
    return val;
}
 
// Function to perform the queries
static void performQueries(int queries[], int q)
{
    for(int i = 0; i < q; i++)
    {
        System.out.println(nextValid(queries[i]));
    }
}
 
// Driver code
public static void main(String[] args)
{
    int queries[] = { 4, 6 };
    int q = queries.length;
     
    // Pre-compute the numbers
    preCompute();
     
    // Perform the queries
    performQueries(queries, q);
}
}
 
// This code is contributed by rag2127


Python3




# Python3 implementation of the approach
from bisect import bisect_right as upper_bound
 
MAX = 100000
 
# To store the pre-computed integers
v = []
 
# Function that returns true if the
# binary representation of x contains
# consecutive 1s
def consecutiveOnes(x):
 
    # To store the previous bit
    p = 0
    while (x > 0):
 
        # Check whether the previous bit
        # and the current bit are both 1
        if (x % 2 == 1 and p == 1):
            return True
 
        # Update previous bit
        p = x % 2
 
        # Go to the next bit
        x //= 2
 
    return False
 
# Function to pre-compute the
# valid numbers from 0 to MAX
def preCompute():
     
    # Store all the numbers which do
    # not have consecutive 1s
    for i in range(MAX + 1):
        if (consecutiveOnes(i) == 0):
            v.append(i)
 
# Function to return the minimum
# number greater than n which does
# not contain consecutive 1s
def nextValid(n):
     
    # Search for the next greater element
    # with no consecutive 1s
    it = upper_bound(v, n)
    val = v[it]
    return val
 
# Function to perform the queries
def performQueries(queries, q):
    for i in range(q):
        print(nextValid(queries[i]))
 
# Driver code
queries = [4, 6]
q = len(queries)
 
# Pre-compute the numbers
preCompute()
 
# Perform the queries
performQueries(queries, q)
 
# This code is contributed by Mohit Kumar


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG{
 
static int MAX = 100000;
 
// To store the pre-computed integers
static List<int> v = new List<int>();
 
static int upper_bound(List<int> ar, int k)
{
    int s = 0;
    int e = ar.Count;
     
    while (s != e)
    {
        int mid = s + e >> 1;
      
        if (ar[mid] <= k)
        {
            s = mid + 1;
        }
        else
        {
            e = mid;
        }
    }
  
    if (s == ar.Count)
    {
        return -1;
    }
    return s;
}
 
// Function that returns true if the
// binary representation of x contains
// consecutive 1s
static int consecutiveOnes(int x)
{
     
    // To store the previous bit
    int p = 0;
  
    while (x > 0)
    {
         
        // Check whether the previous bit
        // and the current bit are both 1
        if (x % 2 == 1 && p == 1)
        {
            return 1;
        }
      
        // Update previous bit
        p = x % 2;
      
        // Go to the next bit
        x /= 2;
    }
    return 0;
}
 
// Function to pre-compute the
// valid numbers from 0 to MAX
static void preCompute()
{
     
    // Store all the numbers which do
    // not have consecutive 1s
    for(int i = 0; i <= MAX; i++)
    {
        if (consecutiveOnes(i) == 0)
        {
            v.Add(i);
        }
    }
}
 
// Function to return the minimum
// number greater than n which does
// not contain consecutive 1s
static int nextValid(int n)
{
     
    // Search for the next greater element
    // with no consecutive 1s
    int it = upper_bound(v, n);
    int val = v[it];
    return val;
}
 
// Function to perform the queries
static void performQueries(int[] queries, int q)
{
    for(int i = 0; i < q; i++)
    {
        Console.WriteLine(nextValid(queries[i]));
    }
}
 
// Driver code
static public void Main()
{
    int[] queries = { 4, 6 };
    int q = queries.Length;
     
    // Pre-compute the numbers
    preCompute();
     
    // Perform the queries
    performQueries(queries, q);
}
}
 
// This code is contributed by avanitrachhadiya2155


Javascript




<script>
 
// JavaScript implementation of the approach
 
const MAX = 100000;
 
// To store the pre-computed integers
let v = [];
 
function upper_bound(ar, k)
{
    let s = 0;
    let e = ar.length;
     
    while (s != e)
    {
        let mid = s + e >> 1;
         
        if (ar[mid] <= k)
        {
            s = mid + 1;
        }
        else
        {
            e = mid;
        }
    }
     
    if (s == ar.length)
    {
        return -1;
    }
    return s;
}
 
// Function that returns true if the
// binary representation of x contains
// consecutive 1s
function consecutiveOnes(x)
{
 
    // To store the previous bit
    let p = 0;
    while (x > 0) {
 
        // Check whether the previous bit
        // and the current bit are both 1
        if (x % 2 == 1 && p == 1)
            return true;
 
        // Update previous bit
        p = x % 2;
 
        // Go to the next bit
        x = parseInt(x / 2);
    }
    return false;
}
 
// Function to pre-compute the
// valid numbers from 0 to MAX
function preCompute()
{
    // Store all the numbers which do
    // not have consecutive 1s
    for (let i = 0; i <= MAX; i++) {
        if (!consecutiveOnes(i))
            v.push(i);
    }
}
 
// Function to return the minimum
// number greater than n which does
// not contain consecutive 1s
function nextValid(n)
{
    // Search for the next greater element
    // with no consecutive 1s
    let it = upper_bound(v, n);
    let val = v[it];
    return val;
}
 
// Function to perform the queries
function performQueries(queries, q)
{
    for (let i = 0; i < q; i++)
        document.write(nextValid(queries[i]) + "<br>");
}
 
// Driver code
    let queries = [ 4, 6 ];
    let q = queries.length;
 
    // Pre-compute the numbers
    preCompute();
 
    // Perform the queries
    performQueries(queries, q);
 
</script>


Output: 

5
8

 

Time Complexity: O(MAX * log MAX)

Auxiliary Space: O(MAX)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments