Monday, November 18, 2024
Google search engine
HomeData Modelling & AIFind n positive integers that satisfy the given equations

Find n positive integers that satisfy the given equations

Given three integers N, X, and Y. The task is to find N positive integers that satisfy the given equations. 

  1. a12 + a22 + …. + an2 ? X
  2. a1 + a2 + …. + an ? Y

If no such sequence of integers is possible then print -1.

Examples:  

Input: N = 3, X = 254, Y = 18 
Output: 1 1 16 
12 + 12 + 162 = 1 + 1 + 256 = 258 which is ? X 
1 + 1 + 16 = 18 which is ? Y

Input: N = 2, X = 3, Y = 2 
Output: -1 
No such sequence exists. 

Approach: It is easy to see that in order to maximize the sum of squares, one should make all numbers except the first one equal to 1 and maximize the first number. Keeping this in mind we only need to check whether the given value of y is large enough to satisfy a restriction that all n numbers are positive. If y is not too small, then all we need is to ensure that X ? 1 + 1 + … + (y – (n – 1))2.

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find n positive integers
// that satisfy the given conditions
void findIntegers(int n, int x, int y)
{
 
    // To store n positive integers
    vector<int> ans;
 
    // Place N - 1 one's
    for (int i = 0; i < n - 1; i++)
        ans.push_back(1);
 
    // If can not place (y - (n - 1))
    // as the Nth integer
    if (y - (n - 1) <= 0) {
        cout << "-1";
        return;
    }
 
    // Place Nth integer
    ans.push_back(y - (n - 1));
 
    // To store the sum of
    // squares of N integers
    int store = 0;
    for (int i = 0; i < n; i++)
        store += ans[i] * ans[i];
 
    // If it is less than x
    if (store < x) {
        cout << "-1";
        return;
    }
 
    // Print the required integers
    for (int i = 0; i < n; i++)
        cout << ans[i] << " ";
}
 
// Driver code
int main()
{
    int n = 3, x = 254, y = 18;
    findIntegers(n, x, y);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
     
// Function to find n positive integers
// that satisfy the given conditions
static void findIntegers(int n, int x, int y)
{
 
    // To store n positive integers
    ArrayList<Integer> ans = new ArrayList<Integer>();
 
    // Place N - 1 one's
    for (int i = 0; i < n - 1; i++)
        ans.add(1);
 
    // If can not place (y - (n - 1))
    // as the Nth integer
    if (y - (n - 1) <= 0)
    {
        System.out.print("-1");
        return;
    }
 
    // Place Nth integer
    ans.add(y - (n - 1));
 
    // To store the sum of
    // squares of N integers
    int store = 0;
    for (int i = 0; i < n; i++)
        store += ans.get(i) * ans.get(i);
 
    // If it is less than x
    if (store < x)
    {
        System.out.print("-1");
        return;
    }
 
    // Print the required integers
    for (int i = 0; i < n; i++)
        System.out.print(ans.get(i)+" ");
}
 
// Driver code
public static void main (String[] args)
{
    int n = 3, x = 254, y = 18;
    findIntegers(n, x, y);
}
}
 
// This code is contributed by mits


Python3




# Python3 implementation of the approach
 
# Function to find n positive integers
# that satisfy the given conditions
def findIntegers(n, x, y):
 
    # To store n positive integers
    ans = []
 
    # Place N - 1 one's
    for i in range(n - 1):
        ans.append(1)
 
    # If can not place (y - (n - 1))
    # as the Nth integer
    if (y - (n - 1) <= 0):
        print("-1", end = "")
        return
 
    # Place Nth integer
    ans.append(y - (n - 1))
 
    # To store the sum of
    # squares of N integers
    store = 0
 
    for i in range(n):
        store += ans[i] * ans[i]
 
    # If it is less than x
    if (store < x):
        print("-1", end = "")
        return;
 
    # Print the required integers
    for i in range(n):
        print(ans[i], end = " ")
 
# Driver code
n, x, y = 3, 254, 18
findIntegers(n, x, y)
 
# This code is contributed by mohit kumar


C#




// C# implementation of the approach
using System;
using System.Collections;
 
class GFG
{
     
// Function to find n positive integers
// that satisfy the given conditions
static void findIntegers(int n, int x, int y)
{
 
    // To store n positive integers
    ArrayList ans = new ArrayList();
 
    // Place N - 1 one's
    for (int i = 0; i < n - 1; i++)
        ans.Add(1);
 
    // If can not place (y - (n - 1))
    // as the Nth integer
    if (y - (n - 1) <= 0)
    {
        Console.Write("-1");
        return;
    }
 
    // Place Nth integer
    ans.Add(y - (n - 1));
 
    // To store the sum of
    // squares of N integers
    int store = 0;
    for (int i = 0; i < n; i++)
        store += (int)ans[i] *(int)ans[i];
 
    // If it is less than x
    if (store < x)
    {
        Console.Write("-1");
        return;
    }
 
    // Print the required integers
    for (int i = 0; i < n; i++)
        Console.Write((int)ans[i]+" ");
}
 
// Driver code
static void Main()
{
    int n = 3, x = 254, y = 18;
    findIntegers(n, x, y);
}
}
 
// This code is contributed by mits


PHP




<?php
// Php implementation of the approach
 
// Function to find n positive integers
// that satisfy the given conditions
function findIntegers($n, $x, $y)
{
 
    // To store n positive integers
    $ans = array();
 
    // Place N - 1 one's
    for ($i = 0; $i < $n - 1; $i++)
        array_push($ans,1) ;
 
    // If can not place (y - (n - 1))
    // as the Nth integer
    if ($y - ($n - 1) <= 0)
    {
        echo "-1";
        return;
    }
 
    // Place Nth integer
    array_push($ans,$y - ($n - 1));
 
    // To store the sum of
    // squares of N integers
    $store = 0;
    for ($i = 0; $i < $n; $i++)
        $store += $ans[$i] * $ans[$i];
 
    // If it is less than x
    if ($store < $x)
    {
        echo "-1";
        return;
    }
 
    // Print the required integers
    for ($i = 0; $i < $n; $i++)
        echo $ans[$i]," ";
}
 
    // Driver code
    $n = 3; $x = 254; $y = 18;
    findIntegers($n, $x, $y);
     
    // This code is contributed by Ryuga
?>


Javascript




<script>
 
// JavaScript implementation of the approach
 
// Function to find n positive integers
// that satisfy the given conditions
function findIntegers(n, x, y)
{
   
    // To store n positive integers
    let ans = [];
   
    // Place N - 1 one's
    for (let i = 0; i < n - 1; i++)
        ans.push(1);
   
    // If can not place (y - (n - 1))
    // as the Nth integer
    if (y - (n - 1) <= 0)
    {
        document.write("-1");
        return;
    }
   
    // Place Nth integer
    ans.push(y - (n - 1));
   
    // To store the sum of
    // squares of N integers
    let store = 0;
    for (let i = 0; i < n; i++)
        store += ans[i] * ans[i];
   
    // If it is less than x
    if (store < x)
    {
        document.write("-1");
        return;
    }
   
    // Print the required integers
    for (let i = 0; i < n; i++)
        document.write(ans[(i)]+" ");
}     
     
// Driver Code
 
     let n = 3, x = 254, y = 18;
    findIntegers(n, x, y);
           
</script>


Output: 

1 1 16

 

Time Complexity: O(n)
Auxiliary Space: O(n)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments