Sunday, November 17, 2024
Google search engine
HomeData Modelling & AIFind K smallest leaf nodes from a given Binary Tree

Find K smallest leaf nodes from a given Binary Tree

Given a binary tree and an integer K, the task is to find the K smallest leaf nodes from the given binary tree. The number of leaf nodes will always be at least K.

Examples:

Input: 
                 
                /  \
             2     3
           / \    / \
         4  5  6   7
        /     \         \
      21     8       19
Output: 6 8 19
Explanation:
There are 4 leaf nodes in the above binary tree 
out of which 6, 8, 19 are the smallest three leaf nodes.

Input:
                 11        
                /  \
            12    3
           /  \    / \   
       41 15 61  1
                     \
                     8
Output: 1 8 15
Explanation:
There are 4 leaf nodes in the above binary tree 
out of which 1, 8, 15 are the smallest three leaf nodes.

Approach: Follow the steps below to solve the problem:

  • Traverse the Binary Tree.
  • Check for each node if it contains neither left child nor the right child. If found to be true, then that node is a leaf node. Store all such nodes in an array.
  • Sort the array of leaf nodes and print the K smallest leaf values from the array.

Below is the implementation of the above approach:

C++




// C++ program of the
// above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Structure of
// binary tree node
struct Node {
    int data;
    Node *left, *right;
};
 
// Function to create new node
Node* newNode(int data)
{
    Node* temp = new Node();
    temp->data = data;
    temp->left = temp->right = NULL;
    return temp;
}
 
// Utility function which calculates
// smallest three nodes of all leaf nodes
void storeLeaf(Node* root, vector<int>& arr)
{
    if (!root)
        return;
 
    // Check if current root is a leaf node
    if (!root->left and !root->right) {
        arr.push_back(root->data);
        return;
    }
 
    // Traverse the left
    // and right subtree
    storeLeaf(root->left, arr);
    storeLeaf(root->right, arr);
}
 
// Function to find the K smallest
// nodes of the Binary Tree
void KSmallest(Node* root, int k)
{
    vector<int> arr;
    storeLeaf(root, arr);
 
    // Sorting the Leaf nodes array
    sort(arr.begin(), arr.end());
 
    // Loop to print the K smallest
    // Leaf nodes of the array
    for (int i = 0; i < k; i++) {
        if (i < arr.size()) {
            cout << arr[i] << " ";
        }
        else {
            break;
        }
    }
}
 
// Driver Code
int main()
{
    // Construct binary tree
    Node* root = newNode(1);
    root->left = newNode(2);
    root->left->left = newNode(4);
    root->left->left->left = newNode(21);
    root->left->right = newNode(5);
    root->left->right->right = newNode(8);
    root->right = newNode(3);
    root->right->left = newNode(6);
    root->right->right = newNode(7);
    root->right->right->right = newNode(19);
 
    // Function Call
    KSmallest(root, 3);
    return 0;
}


Java




// Java program of the
// above approach
import java.util.*;
 
class GFG{
 
// Structure of
// binary tree node
static class Node
{
    int data;
    Node left, right;
};
 
// Function to create new node
static Node newNode(int data)
{
    Node temp = new Node();
    temp.data = data;
    temp.left = temp.right = null;
    return temp;
}
 
// Utility function which calculates
// smallest three nodes of all leaf nodes
static Vector<Integer> storeLeaf(Node root,
                       Vector<Integer> arr)
{
    if (root == null)
        return arr;
 
    // Check if current root is a leaf node
    if (root.left == null &&
       root.right == null)
    {
        arr.add(root.data);
        return arr;
    }
 
    // Traverse the left
    // and right subtree
    arr = storeLeaf(root.left, arr);
    arr = storeLeaf(root.right, arr);
    return arr;
}
 
// Function to find the K smallest
// nodes of the Binary Tree
static void KSmallest(Node root, int k)
{
    Vector<Integer> arr = new Vector<Integer>();
    arr = storeLeaf(root, arr);
 
    // Sorting the Leaf nodes array
    Collections.sort(arr);
 
    // Loop to print the K smallest
    // Leaf nodes of the array
    for(int i = 0; i < k; i++)
    {
        if (i < arr.size())
        {
            System.out.print(arr.get(i) + " ");
        }
        else
        {
            break;
        }
    }
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Construct binary tree
    Node root = newNode(1);
    root.left = newNode(2);
    root.left.left = newNode(4);
    root.left.left.left = newNode(21);
    root.left.right = newNode(5);
    root.left.right.right = newNode(8);
    root.right = newNode(3);
    root.right.left = newNode(6);
    root.right.right = newNode(7);
    root.right.right.right = newNode(19);
 
    // Function call
    KSmallest(root, 3);
}
}
 
// This code is contributed by Amit Katiyar


Python3




# Python3 program for the
# above approach
 
# Binary tree node
class Node:
    def __init__(self, data):
       
        self.data = data
        self.left = None
        self.right = None
 
# Utility function which calculates
# smallest three nodes of all leaf nodes
def storeLeaf(root: Node,
              arr : list) -> None:
 
    if (not root):
        return
 
    # Check if current root
    # is a leaf node
    if (not root.left and
        not root.right):
        arr.append(root.data)
        return
 
    # Traverse the left
    # and right subtree
    storeLeaf(root.left, arr)
    storeLeaf(root.right, arr)
 
# Function to find the K smallest
# nodes of the Binary Tree
def KSmallest(root: Node,
              k: int) -> None:
 
    arr = []
    storeLeaf(root, arr)
 
    # Sorting the Leaf
    # nodes array
    arr.sort()
 
    # Loop to print the K smallest
    # Leaf nodes of the array
    for i in range(k):
        if (i < len(arr)):
            print(arr[i], end = " ")
        else:
            break
 
# Driver Code
if __name__ == "__main__":
 
    # Construct binary tree
    root = Node(1)
    root.left = Node(2)
    root.left.left = Node(4)
    root.left.left.left = Node(21)
    root.left.right = Node(5)
    root.left.right.right = Node(8)
    root.right = Node(3)
    root.right.left = Node(6)
    root.right.right = Node(7)
    root.right.right.right = Node(19)
 
    # Function Call
    KSmallest(root, 3)
 
# This code is contributed by sanjeev2552


C#




// C# program of the
// above approach
using System;
using System.Collections.Generic;
 
class GFG{
 
// Structure of
// binary tree node
class Node
{
    public int data;
    public Node left, right;
};
 
// Function to create new node
static Node newNode(int data)
{
    Node temp = new Node();
    temp.data = data;
    temp.left = temp.right = null;
    return temp;
}
 
// Utility function which calculates
// smallest three nodes of all leaf nodes
static List<int> storeLeaf(Node root,
                           List<int> arr)
{
    if (root == null)
        return arr;
 
    // Check if current root is a leaf node
    if (root.left == null &&
       root.right == null)
    {
        arr.Add(root.data);
        return arr;
    }
 
    // Traverse the left
    // and right subtree
    arr = storeLeaf(root.left, arr);
    arr = storeLeaf(root.right, arr);
    return arr;
}
 
// Function to find the K smallest
// nodes of the Binary Tree
static void KSmallest(Node root, int k)
{
    List<int> arr = new List<int>();
    arr = storeLeaf(root, arr);
 
    // Sorting the Leaf nodes array
    arr.Sort();
 
    // Loop to print the K smallest
    // Leaf nodes of the array
    for(int i = 0; i < k; i++)
    {
        if (i < arr.Count)
        {
            Console.Write(arr[i] + " ");
        }
        else
        {
            break;
        }
    }
}
 
// Driver Code
public static void Main(String[] args)
{
     
    // Construct binary tree
    Node root = newNode(1);
    root.left = newNode(2);
    root.left.left = newNode(4);
    root.left.left.left = newNode(21);
    root.left.right = newNode(5);
    root.left.right.right = newNode(8);
    root.right = newNode(3);
    root.right.left = newNode(6);
    root.right.right = newNode(7);
    root.right.right.right = newNode(19);
 
    // Function call
    KSmallest(root, 3);
}
}
 
// This code is contributed by Amit Katiyar


Javascript




<script>
 
    // JavaScript program for the above approach
     
    // Structure of binary tree node
    class Node
    {
        constructor(data) {
           this.left = null;
           this.right = null;
           this.data = data;
        }
    }
     
    // Function to create new node
    function newNode(data)
    {
        let temp = new Node(data);
        return temp;
    }
     
    // Utility function which calculates
    // smallest three nodes of all leaf nodes
    function storeLeaf(root, arr)
    {
        if (root == null)
            return arr;
 
        // Check if current root is a leaf node
        if (root.left == null &&
           root.right == null)
        {
            arr.push(root.data);
            return arr;
        }
 
        // Traverse the left
        // and right subtree
        arr = storeLeaf(root.left, arr);
        arr = storeLeaf(root.right, arr);
        return arr;
    }
 
    // Function to find the K smallest
    // nodes of the Binary Tree
    function KSmallest(root, k)
    {
        let arr = [];
        arr = storeLeaf(root, arr);
 
        // Sorting the Leaf nodes array
        arr.sort(function(a, b){return a - b});
 
        // Loop to print the K smallest
        // Leaf nodes of the array
        for(let i = 0; i < k; i++)
        {
            if (i < arr.length)
            {
                document.write(arr[i] + " ");
            }
            else
            {
                break;
            }
        }
    }
     
    // Construct binary tree
    let root = newNode(1);
    root.left = newNode(2);
    root.left.left = newNode(4);
    root.left.left.left = newNode(21);
    root.left.right = newNode(5);
    root.left.right.right = newNode(8);
    root.right = newNode(3);
    root.right.left = newNode(6);
    root.right.right = newNode(7);
    root.right.right.right = newNode(19);
  
    // Function call
    KSmallest(root, 3);
    
</script>


Output: 

6 8 19

Time Complexity:  O(N + L*logL), Here L is the count of leaf nodes and N is the number of nodes. 
Auxiliary Space: O(L + logN)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments