Given two arrays A[] and B[] containing N elements, the task is to find, for every element in the array B[], the element which is just strictly greater than that element which is present in the array A[]. If no value is present, then print ‘null’.
Note: The value from the array A[] can only be used once.
Examples:
Input: A[] = {0, 1, 2, 3, 4}, B[] = {0, 1, 1, 2, 3}
Output: 1 2 3 4 null
Explanation:
On iterating every element in the array B[]:
The value which is strictly greater than 0 and present in the array A[] is 1.
Similarly, the value which is strictly greater than 1 and present in the array A[] is 2.
Similarly, the value which is strictly greater than 1 and present in the array A[] is 3 because 2 has already been used for the previous 1.
Similarly, the value which is strictly greater than 2 and present in the array A[] is 4.
Now, there is no value in the array which is greater than 3 because 4 has already been used for the previous 2. So, null is printed.Input: A[] = {0, 1, 6, 4, 0, 2, 4, 2, 4, 7}, B[] = {0, 1, 6, 4, 0, 2, 4, 2, 4, 7}
Output: 1 2 7 6 2 4 null 4 null null
Approach: The idea is to use the Tree set Data structure. But since a tree set doesn’t support duplicate values, a hashmap is used to store the frequency of the elements.
- Iterate through the array A[].
- Add the elements in the array A[] into the tree set.
- Update their frequencies in the hashmap.
- Now, for every element in the array B[], find the value which is strictly greater than the current value by using the higher() function of the tree set.
- Now, reduce the frequency of this number in the hash map by 1.
- Keep repeating the above two steps until the frequency of the numbers become 0. If it is 0, then all the occurrences of that number have been used up for the elements. So, remove that element from the tree set.
Below is the implementation of the above approach:
C++
// C++ program to find the values // strictly greater than the element // and present in the array #include<bits/stdc++.h> using namespace std; // Function to find the values // strictly greater than the element // and present in the array void operations( int n, long long A[], long long B[]) { // Treeset to store the // values of the array A set< long long >tree; // HashMap to store the frequencies // of the values in array A map< long long , int >freqMap; // Iterating through the array // and add values in the treeset for ( int j = 0; j < n; j++) { long long x = A[j]; tree.insert(x); freqMap[x]++; } // Finding the strictly greater value // in the array A[] using "higher()" // function and also reducing the // frequency of that value because it // has to be used only once for ( int j = 0; j < n; j++) { long long x = B[j]; // If the higher value exists if (tree.upper_bound(x) != tree.end()) { cout << *tree.upper_bound(x) << " " ; // If the frequency value is 1 // then remove it from treeset // because it has been used // and its frequency becomes 0 if (freqMap[*tree.upper_bound(x)] == 1) { tree.erase(*tree.upper_bound(x)); } // Else, reducing the frequency // by 1 else { freqMap[*tree.upper_bound(x)]--; } } // If the value is not present // then print null else { cout << "null " ; } } } // Driver code int main() { int n = 12; long long A[] = { 9, 5, 100, 4, 89, 2, 0, 2, 89, 77, 77, 77 }; long long B[] = { 0, 18, 60, 34, 50, 29, 4, 20, 48, 77, 2, 8 }; operations(n, A, B); } // This code is contributed by Stream_Cipher |
Java
// Java program to find the values // strictly greater than the element // and present in the array import java.io.*; import java.util.*; public class GFG { // Function to find the values // strictly greater than the element // and present in the array public static void operations( int n, long A[], long B[]) { // Treeset to store the // values of the array A TreeSet<Long> tree = new TreeSet<Long>(); // HashMap to store the frequencies // of the values in array A HashMap<Long, Integer> freqMap = new HashMap<Long, Integer>(); // Iterating through the array // and add values in the treeset for ( int j = 0 ; j < n; j++) { long x = A[j]; tree.add(x); // Updating the frequencies if (freqMap.containsKey(x)) { freqMap.put(x, freqMap.get(x) + 1 ); } else { freqMap.put(x, 1 ); } } // Finding the strictly greater value // in the array A[] using "higher()" // function and also reducing the // frequency of that value because it // has to be used only once for ( int j = 0 ; j < n; j++) { long x = B[j]; // If the higher value exists if (tree.higher(x) != null ) { System.out.print(tree.higher(x) + " " ); // If the frequency value is 1 // then remove it from treeset // because it has been used // and its frequency becomes 0 if (freqMap.get(tree.higher(x)) == 1 ) { tree.remove(tree.higher(x)); } // Else, reducing the frequency // by 1 else { freqMap.put( tree.higher(x), freqMap.get(tree.higher(x)) - 1 ); } } // If the value is not present // then print null else { System.out.print( "null " ); } } } // Driver code public static void main(String args[]) { int n = 12 ; long A[] = new long [] { 9 , 5 , 100 , 4 , 89 , 2 , 0 , 2 , 89 , 77 , 77 , 77 }; long B[] = new long [] { 0 , 18 , 60 , 34 , 50 , 29 , 4 , 20 , 48 , 77 , 2 , 8 }; operations(n, A, B); } } |
Python3
# Python program to find the values # strictly greater than the element # and present in the array from typing import List from bisect import bisect_right # Function to find the values # strictly greater than the element # and present in the array def operations(n: int , A: List [ int ], B: List [ int ]) - > None : # Treeset to store the # values of the array A tree = set () # HashMap to store the frequencies # of the values in array A freqMap = dict () # Iterating through the array # and add values in the treeset for j in range (n): x = A[j] tree.add(x) if x not in freqMap: freqMap[x] = 0 freqMap[x] + = 1 # Finding the strictly greater value # in the array A[] using "higher()" # function and also reducing the # frequency of that value because it # has to be used only once for j in range (n): x = B[j] # If the higher value exists sset = sorted ( list (tree)) index = bisect_right(sset, x) if index < len (tree): print (sset[index], end = " " ) # If the frequency value is 1 # then remove it from treeset # because it has been used # and its frequency becomes 0 if (freqMap[sset[index]] = = 1 ): tree.remove(sset[index]) # Else, reducing the frequency # by 1 else : freqMap[sset[index]] - = 1 # If the value is not present # then print null else : print ( "null" , end = " " ) # Driver code if __name__ = = "__main__" : n = 12 A = [ 9 , 5 , 100 , 4 , 89 , 2 , 0 , 2 , 89 , 77 , 77 , 77 ] B = [ 0 , 18 , 60 , 34 , 50 , 29 , 4 , 20 , 48 , 77 , 2 , 8 ] operations(n, A, B) # This code is contributed by sanjeev2552 |
C#
// C# code for the above approach using System; using System.Collections.Generic; namespace GFG { class Program { // Function to find the values // strictly greater than the element // and present in the array static void operations( int n, long [] A, long [] B) { // Treeset to store the // values of the array A SortedSet< long > tree = new SortedSet< long >(); // HashMap to store the frequencies // of the values in array A Dictionary< long , int > freqMap = new Dictionary< long , int >(); // Iterating through the array // and add values in the treeset for ( int j = 0; j < n; j++) { long x = A[j]; tree.Add(x); // Updating the frequencies if (freqMap.ContainsKey(x)) { freqMap[x] = freqMap[x] + 1; } else { freqMap[x] = 1; } } // Finding the strictly greater value // in the array A[] using "GetViewBetween()" // function and also reducing the // frequency of that value because it // has to be used only once for ( int j = 0; j < n; j++) { long x = B[j]; // If the higher value exists if (tree.GetViewBetween(x, long .MaxValue).Count > 0) { Console.Write(tree.GetViewBetween(x, long .MaxValue).Min + " " ); // If the frequency value is 1 // then remove it from treeset // because it has been used // and its frequency becomes 0 if (freqMap[tree.GetViewBetween(x, long .MaxValue).Min] == 1) { tree.Remove(tree.GetViewBetween(x, long .MaxValue).Min); } // Else, reducing the frequency // by 1 else { freqMap[tree.GetViewBetween(x, long .MaxValue).Min] = freqMap[tree.GetViewBetween(x, long .MaxValue).Min] - 1; } } // If the value is not present // then print null else { Console.Write( "null " ); } } } static void Main( string [] args) { int n = 12; long [] A = new long [] { 9, 5, 100, 4, 89, 2, 0, 2, 89, 77, 77, 77 }; long [] B = new long [] { 0, 18, 60, 34, 50, 29, 4, 20, 48, 77, 2, 8 }; operations(n, A, B); } } } // This code is contributed by Potta Lokesh |
Javascript
// JavaScript program to find the values // strictly greater than the element // and present in the array // Function to find the values // strictly greater than the element // and present in the array function operations(n, A, B) { // Treeset to store the // values of the array A let tree = new Set(); // HashMap to store the frequencies // of the values in array A let freqMap = new Map(); // Iterating through the array // and add values in the treeset for (let j = 0; j < n; j++) { let x = A[j]; tree.add(x); if (!freqMap.has(x)) { freqMap.set(x, 0); } freqMap.set(x, freqMap.get(x) + 1); } // Finding the strictly greater value // in the array A[] using "higher()" // function and also reducing the // frequency of that value because it // has to be used only once for (let j = 0; j < n; j++) { let x = B[j]; // If the higher value exists let sset = Array.from(tree).sort((a, b) => a - b); let index = sset.findIndex(item => item > x); if (index >= 0) { process.stdout.write(sset[index] + " " ); // If the frequency value is 1 // then remove it from treeset // because it has been used // and its frequency becomes 0 if (freqMap.get(sset[index]) === 1) { tree. delete (sset[index]); } // Else, reducing the frequency // by 1 else { freqMap.set(sset[index], freqMap.get(sset[index]) - 1); } } // If the value is not present // then print null else { process.stdout.write( "null " ); } } } // Driver code let n = 12; let A = [9, 5, 100, 4, 89, 2, 0, 2, 89, 77, 77, 77]; let B = [0, 18, 60, 34, 50, 29, 4, 20, 48, 77, 2, 8]; operations(n, A, B); // This code is contributed by phasing17 |
2 77 77 77 89 89 5 100 null null 4 9
Time Complexity: O(N * log(N)) because the insertion of one element takes log(N) in a tree set.
Space Complexity: O(N) as set and map has been created to store elements.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!