Saturday, November 16, 2024
Google search engine
HomeData Modelling & AIFind closest value for every element in array

Find closest value for every element in array

Given an array of integers, find the closest element for every element. 

Examples:

Input : arr[] = {10, 5, 11, 6, 20, 12} 
Output : 11 6 12 5 12 11

Input : arr[] = {10, 5, 11, 10, 20, 12} 
Output : 10 10 12 10 12 11 

A simple solution is to run two nested loops. We pick an outer element one by one. For every picked element, we traverse the remaining array and find the closest element. The time complexity of this solution is  O(N2).

Steps:

1. Create a base case in which if the size of the 
 ‘vec’ array is one print -1;
2.create a nested iterations using the ‘for’ loop with the help of 
‘i’ and ‘j’ variables.
3. Take two variables to store the abs() difference and closest
 element for an element. 
4. In the second ‘for’ loop, assign the value at the ‘jth’
 position of the ‘vec’ vector, if that element is close to 
 the respective element.
5.Print the closest element.

Implementation of above approach :

C++




// C++ code of "Find closest value for every element in
// array"
#include <bits/stdc++.h>
using namespace std;
void getResult(vector<int> vec, int n)
{
    if (n <= 1) {
        cout << "-1" << endl;
        return;
    }
    for (int i = 0; i < n; i++) {
        int mini = INT_MAX;
        int mini_diff = INT_MAX;
        for (int j = 0; j < n; j++) {
            if ((i ^ j)) {
                int temp
                    = abs(vec[i] - vec[j]); // finding diff
                if (temp < mini_diff) {
                    // checking its minimum or not!
                    mini = vec[j];
                    mini_diff = temp;
                }
            }
        }
        cout << mini << " "; // printing the closest
                             // elemtent
    }
    return;
}
int main()
{
    vector<int> vec = {  10, 5, 11, 6, 20, 12, 10};
    int n = vec.size(); // size of array
    cout << "vec Array:- ";
    for (int i = 0; i < n; i++) {
        cout << vec[i] << " "; // intital array
    }
    cout << endl;
    cout << "Resultant Array:- ";
    getResult(vec, n); // final array or result array
}
// code is contributed by kg_codex


Python3




import sys
 
def get_result(arr, n):
    if n <= 1:
        print("-1")
        return
 
    for i in range(n):
        mini = sys.maxsize
        mini_diff = sys.maxsize
 
        for j in range(n):
            if i != j:
                temp = abs(arr[i] - arr[j])  # finding diff
 
                if temp < mini_diff:  # checking its minimum or not!
                    mini = arr[j]
                    mini_diff = temp
 
        print(mini, end=" "# printing the closest element
 
    return
 
if __name__ == "__main__":
    arr = [10, 5, 11, 6, 20, 12, 10]
    n = len(arr)
 
    print("vec Array:-", end=" ")
    for i in range(n):
        print(arr[i], end=" "# initial array
    print()
 
    print("Resultant Array:-", end=" ")
    get_result(arr, n)  # final array or result array


Java




import java.util.*;
 
public class Main {
    public static void getResult(List<Integer> vec, int n)
    {
        if (n <= 1) {
            System.out.println("-1");
            return;
        }
 
        for (int i = 0; i < n; i++) {
            int mini = Integer.MAX_VALUE;
            int mini_diff = Integer.MAX_VALUE;
 
            for (int j = 0; j < n; j++) {
                if ((i ^ j) != 0) {
                    int temp
                        = Math.abs(vec.get(i) - vec.get(j));
                    if (temp < mini_diff) {
                        mini = vec.get(j);
                        mini_diff = temp;
                    }
                }
            }
 
            System.out.print(mini + " ");
        }
    }
 
    public static void main(String[] args)
    {
        List<Integer> vec
            = Arrays.asList(10, 5, 11, 6, 20, 12, 10);
        int n = vec.size();
        System.out.print("vec Array:- ");
 
        for (int i = 0; i < n; i++) {
            System.out.print(vec.get(i) + " ");
        }
 
        System.out.println("\nResultant Array:- ");
        getResult(vec, n);
    }
}


C#




using System;
using System.Collections.Generic;
 
public class Program
{
    public static void Main()
    {
        List<int> vec = new List<int>{ 10, 5, 11, 6, 20, 12, 10 };
        int n = vec.Count; // size of array
         
        Console.Write("vec Array:- ");
        for (int i = 0; i < n; i++) {
            Console.Write(vec[i] + " "); // intital array
        }
        Console.WriteLine();
         
        Console.Write("Resultant Array:- ");
        GetResult(vec, n); // final array or result array
    }
     
    static void GetResult(List<int> vec, int n)
    {
        if (n <= 1) {
            Console.WriteLine("-1");
            return;
        }
         
        for (int i = 0; i < n; i++) {
            int mini = int.MaxValue;
            int mini_diff = int.MaxValue;
             
            for (int j = 0; j < n; j++) {
                if ((i ^ j) != 0) {
                    int temp = Math.Abs(vec[i] - vec[j]); // finding diff
                     
                    if (temp < mini_diff) {
                        // checking its minimum or not!
                        mini = vec[j];
                        mini_diff = temp;
                    }
                }
            }
             
            Console.Write(mini + " "); // printing the closest elemtent
        }
    }
}


Javascript




function getResult(vec) {
  const n = vec.length;
 
  if (n <= 1) {
    console.log("-1");
    return;
  }
 
  for (let i = 0; i < n; i++) {
    let mini = Number.MAX_SAFE_INTEGER;
    let mini_diff = Number.MAX_SAFE_INTEGER;
 
    for (let j = 0; j < n; j++) {
      if (i !== j) {
        const temp = Math.abs(vec[i] - vec[j]);
 
        if (temp < mini_diff) {
          mini = vec[j];
          mini_diff = temp;
        }
      }
    }
 
    process.stdout.write(mini + " ");
  }
 
  console.log("");
}
 
const vec = [10, 5, 11, 6, 20, 12, 10];
 
console.log("vec Array:- " + vec.join(" "));
 
console.log("Resultant Array:- ");
getResult(vec);


Output

vec Array:- 10 5 11 6 20 12 10 
Resultant Array:- 10 6 10 5 12 11 10 
Time Complexity: O(N2)
Auxiliary Space: O(1)

An efficient solution is to use Self Balancing BST (Implemented as set in C++ and TreeSet in Java). In a Self Balancing BST, we can do both insert and closest greater operations in O(Log n) time. 

Implementation:

C++




// C++ program to demonstrate insertions in set
#include <iostream>
#include <set>
#include <map>
using namespace std;
 
void closestGreater(int arr[], int n)
{
    if (n == -1) {
        cout << -1 << " ";
        return;
    }
 
    // Insert all array elements into a map.
    // A map value indicates whether an element
    // appears once or more.
    map<int, bool> mp;
    for (int i = 0; i < n; i++) {
 
        // A value "True" means that the key
        // appears more than once.
        if (mp.find(arr[i]) != mp.end())
            mp[arr[i]] = true;
        else
            mp[arr[i]] = false;
    }
 
    // Find smallest greater element for every
    // array element
    for (int i = 0; i < n; i++) {
 
        // If there are multiple occurrences
        if (mp[arr[i]] == true)
        {
            cout << arr[i] << " ";
            continue;
        }
 
        // If element appears only once
        int greater = 0, lower = 0;
        auto it = mp.upper_bound(arr[i]);
        if (it != mp.end())
            greater = it->first;
        it = mp.lower_bound(arr[i]);
        if (it != mp.begin()) {
            --it;
            lower = it->first;
        }
        if (greater == 0)
            cout << lower << " ";
        else if (lower == 0)
            cout << greater << " ";
        else {
            int d1 = greater - arr[i];
            int d2 = arr[i] - lower;
            if (d1 > d2)
                cout << lower << " ";
            else
                cout << greater << " ";
        }
    }
}
 
int main()
{
    int arr[] = { 10, 5, 11, 6, 20, 12, 10 };
    int n = sizeof(arr) / sizeof(arr[0]);
    closestGreater(arr, n);
    return 0;
}
 
//This code is contributed by shivamsharma215


Java




// Java program to demonstrate insertions in TreeSet
import java.util.*;
 
class TreeSetDemo {
    public static void closestGreater(int[] arr)
    {
        if (arr.length == -1) {
            System.out.print(-1 + " ");
            return;
        }
 
        // Insert all array elements into a TreeMap.
        // A TreeMap value indicates whether an element
        // appears once or more.
        TreeMap<Integer, Boolean> tm =
                    new TreeMap<Integer, Boolean>();
        for (int i = 0; i < arr.length; i++) {
 
            // A value "True" means that the key
            // appears more than once.
            if (tm.containsKey(arr[i]))
                tm.put(arr[i], true);
            else
                tm.put(arr[i], false);
        }
 
        // Find smallest greater element for every
        // array element
        for (int i = 0; i < arr.length; i++) {
 
            // If there are multiple occurrences
            if (tm.get(arr[i]) == true)
            {
                System.out.print(arr[i] + " ");
                continue;
            }
 
            // If element appears only once
            Integer greater = tm.higherKey(arr[i]);
            Integer lower = tm.lowerKey(arr[i]);
            if (greater == null)
                System.out.print(lower + " ");
            else if (lower == null)
                System.out.print(greater + " ");
            else {
                int d1 = greater - arr[i];
                int d2 = arr[i] - lower;
                if (d1 > d2)
                    System.out.print(lower + " ");
                else
                    System.out.print(greater + " ");
            }
        }
    }
 
    public static void main(String[] args)
    {
        int[] arr = { 10, 5, 11, 6, 20, 12, 10 };
        closestGreater(arr);
    }
}


Python3




from collections import defaultdict
 
def closest_greater(arr):
    if len(arr) == 0:
        print("-1", end=" ")
        return
 
    # Insert all array elements into a dictionary.
    # A dictionary value indicates whether an element
    # appears once or more.
    d = defaultdict(int)
    for i in range(len(arr)):
        d[arr[i]] += 1
 
    # Find smallest greater element for every array element
    for i in range(len(arr)):
 
        # If there are multiple occurrences
        if d[arr[i]] > 1:
            print(arr[i], end=" ")
            continue
 
        # If element appears only once
        greater = None
        lower = None
        for key in sorted(d.keys()):
            if key > arr[i]:
                greater = key
                break
            elif key < arr[i]:
                lower = key
 
        if greater is None:
            print(lower, end=" ")
        elif lower is None:
            print(greater, end=" ")
        else:
            d1 = greater - arr[i]
            d2 = arr[i] - lower
            if d1 > d2:
                print(lower, end=" ")
            else:
                print(greater, end=" ")
 
if __name__ == "__main__":
    arr = [10, 5, 11, 6, 20, 12, 10]
    closest_greater(arr)


C#




using System;
using System.Collections.Generic;
using System.Linq;
 
class Program
{
    static void Main(string[] args)
    {
        int[] arr = { 10, 5, 11, 6, 20, 12, 10 };
        ClosestGreater(arr);
    }
 
    static void ClosestGreater(int[] arr)
    {
        if (arr.Length == 0)
        {
            Console.Write("-1 ");
            return;
        }
 
        // Insert all array elements into a dictionary.
        // A dictionary value indicates whether an element
        // appears once or more.
        var dict = new Dictionary<int, int>();
        foreach (int num in arr)
        {
            if (dict.ContainsKey(num))
            {
                dict[num]++;
            }
            else
            {
                dict[num] = 1;
            }
        }
 
        // Find smallest greater element for every array element
        foreach (int num in arr)
        {
            // If there are multiple occurrences
            if (dict[num] > 1)
            {
                Console.Write(num + " ");
                continue;
            }
 
            // If element appears only once
            int? greater = null;
            int? lower = null;
            foreach (int key in dict.Keys.OrderBy(x => x))
            {
                if (key > num)
                {
                    greater = key;
                    break;
                }
                else if (key < num)
                {
                    lower = key;
                }
            }
 
            if (greater == null)
            {
                Console.Write(lower + " ");
            }
            else if (lower == null)
            {
                Console.Write(greater + " ");
            }
            else
            {
                int d1 = greater.Value - num;
                int d2 = num - lower.Value;
                if (d1 > d2)
                {
                    Console.Write(lower + " ");
                }
                else
                {
                    Console.Write(greater + " ");
                }
            }
        }
    }
}


Javascript




function closestGreater(arr) {
  if (arr.length === 0) {
    console.log(-1 + " ");
    return;
  }
 
  // Insert all array elements into a Map.
  // A Map value indicates whether an element
  // appears once or more.
  let map = new Map();
  for (let i = 0; i < arr.length; i++) {
 
    // A value "true" means that the key
    // appears more than once.
    if (map.has(arr[i]))
      map.set(arr[i], true);
    else
      map.set(arr[i], false);
  }
 
  // Find smallest greater element for every
  // array element
  for (let i = 0; i < arr.length; i++) {
 
    // If there are multiple occurrences
    if (map.get(arr[i]) === true) {
      console.log(arr[i] + " ");
      continue;
    }
 
    // If element appears only once
    let greater = null, lower = null;
    for (let [key, value] of map) {
      if (key > arr[i]) {
        if (!greater || key < greater)
          greater = key;
      } else if (key < arr[i]) {
        if (!lower || key > lower)
          lower = key;
      }
    }
    if (greater === null)
      console.log(lower + " ");
    else if (lower === null)
      console.log(greater + " ");
    else {
      let d1 = greater - arr[i];
      let d2 = arr[i] - lower;
      if (d1 > d2)
        console.log(lower + " ");
      else
        console.log(greater + " ");
    }
  }
}
 
let arr = [10, 5, 11, 6, 20, 12, 10];
closestGreater(arr);


Output:

10 6 12 5 12 11 10

Time Complexity: 

  • The first loop for inserting all the elements into the TreeMap takes O(nlog(n)) time because TreeMap uses a Red-Black tree internally to store the elements, and insertion takes O(log(n)) time in the average case, and since there are ‘n’ elements in the array, the total time complexity for inserting all elements into the TreeMap is O(nlog(n)).
  • The second loop for finding the smallest greater element for each array element takes O(nlog(n)) time because the TreeMap provides the higherKey() and lowerKey() methods that take O(log(n)) time in the average case to find the keys greater than and less than the given key, respectively. Since we are calling these methods ‘n’ times, the total time complexity for finding the smallest greater element for each array element is O(nlog(n)).

Therefore, the overall time complexity of the algorithm is O(n*log(n)).

Auxiliary Space:

  • The algorithm uses a TreeMap to store the array elements, which takes O(n) space because each element takes O(1) space, and there are ‘n’ elements in the array.
  • Therefore, the overall auxiliary space complexity of the algorithm is O(n).

Exercise: Another efficient solution is to use sorting that also works in O(n Log n) time. Write complete algorithm and code for sorting based solution.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments