Wednesday, November 20, 2024
Google search engine
HomeData Modelling & AIFind an N x N grid whose xor of every row and...

Find an N x N grid whose xor of every row and column is equal

Given an integer N which is a multiple of 4, the task is to find an N x N grid for which the bitwise xor of every row and column is the same.
Examples: 
 

Input: N = 4 
Output: 
0 1 2 3 
4 5 6 7 
8 9 10 11 
12 13 14 15 
Input: N = 8 
Output: 
0 1 2 3 16 17 18 19 
4 5 6 7 20 21 22 23 
8 9 10 11 24 25 26 27 
12 13 14 15 28 29 30 31 
32 33 34 35 48 49 50 51 
36 37 38 39 52 53 54 55 
40 41 42 43 56 57 58 59 
44 45 46 47 60 61 62 63 
 

 

Approach: To solve this problem let’s fix the xor of every row and column to 0 since xor of 4 consecutive numbers starting from 0 is 0. Here is an example of a 4 x 4 matrix: 
 

0 ^ 1 ^ 2 ^ 3 = 0 
4 ^ 5 ^ 6 ^ 7 = 0 
8 ^ 9 ^ 10 ^ 11 = 0 
12 ^ 13 ^ 14 ^ 15 = 0 
and so on. 
 

If you notice in the above example, the xor of every row and column is 0. Now we need to place the numbers in such a way that the xor of each row and column is 0. So we can divide our N x N matrix into smaller 4 x 4 matrices with N / 4 rows and columns and fill the cells in a way that the xor of every row and column is 0.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the n x n matrix
// that satisfies the given condition
void findGrid(int n)
{
    int arr[n][n];
 
    // Initialize x to 0
    int x = 0;
 
    // Divide the n x n matrix into n / 4 matrices
    // for each of the n / 4 rows where
    // each matrix is of size 4 x 4
    for (int i = 0; i < n / 4; i++) {
        for (int j = 0; j < n / 4; j++) {
            for (int k = 0; k < 4; k++) {
                for (int l = 0; l < 4; l++) {
                    arr[i * 4 + k][j * 4 + l] = x;
                    x++;
                }
            }
        }
    }
 
    // Print the generated matrix
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            cout << arr[i][j] << " ";
        }
        cout << "\n";
    }
}
 
// Driver code
int main()
{
    int n = 4;
 
    findGrid(n);
 
    return 0;
}


Java




// Java implementation of the approach
import java.io.*;
 
class GFG
{
     
// Function to find the n x n matrix
// that satisfies the given condition
static void findGrid(int n)
{
    int [][]arr = new int[n][n];
 
    // Initialize x to 0
    int x = 0;
 
    // Divide the n x n matrix into n / 4 matrices
    // for each of the n / 4 rows where
    // each matrix is of size 4 x 4
    for (int i = 0; i < n / 4; i++)
    {
        for (int j = 0; j < n / 4; j++)
        {
            for (int k = 0; k < 4; k++)
            {
                for (int l = 0; l < 4; l++)
                {
                    arr[i * 4 + k][j * 4 + l] = x;
                    x++;
                }
            }
        }
    }
 
    // Print the generated matrix
    for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < n; j++)
        {
            System.out.print(arr[i][j] + " ");
        }
        System.out.println(" ");
    }
}
 
// Driver code
public static void main (String[] args)
{
    int n = 4;
     
    findGrid(n);
}
}
 
// This code is contributed by ajit.


Python3




# Python3 implementation of the approach
 
# Function to find the n x n matrix
# that satisfies the given condition
def findGrid(n):
 
    arr = [[0 for k in range(n)]
              for l in range(n)]
 
    # Initialize x to 0
    x = 0
 
    # Divide the n x n matrix into n / 4 matrices
    # for each of the n / 4 rows where
    # each matrix is of size 4 x 4
    for i in range(n // 4):
        for j in range(n // 4):
            for k in range(4):
                for l in range(4):
                    arr[i * 4 + k][j * 4 + l] = x
                    x += 1
 
    # Print the generated matrix
    for i in range(n):
        for j in range(n):
            print(arr[i][j], end = " ")
        print()
 
# Driver code
n = 4
findGrid(n)
 
# This code is contributed by divyamohan123


C#




// C# implementation of the approach
using System;
     
class GFG
{
     
// Function to find the n x n matrix
// that satisfies the given condition
static void findGrid(int n)
{
    int [,]arr = new int[n, n];
 
    // Initialize x to 0
    int x = 0;
 
    // Divide the n x n matrix into n / 4 matrices
    // for each of the n / 4 rows where
    // each matrix is of size 4 x 4
    for (int i = 0; i < n / 4; i++)
    {
        for (int j = 0; j < n / 4; j++)
        {
            for (int k = 0; k < 4; k++)
            {
                for (int l = 0; l < 4; l++)
                {
                    arr[i * 4 + k, j * 4 + l] = x;
                    x++;
                }
            }
        }
    }
 
    // Print the generated matrix
    for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < n; j++)
        {
            Console.Write(arr[i, j] + " ");
        }
        Console.WriteLine(" ");
    }
}
 
// Driver code
public static void Main (String[] args)
{
    int n = 4;
     
    findGrid(n);
}
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to find the n x n matrix
// that satisfies the given condition
function findGrid(n)
{
    let arr = new Array(n);
    for (let i = 0; i < n; i++)
        arr[i] = new Array(n);
 
    // Initialize x to 0
    let x = 0;
 
    // Divide the n x n matrix into n / 4 matrices
    // for each of the n / 4 rows where
    // each matrix is of size 4 x 4
    for (let i = 0; i < parseInt(n / 4); i++) {
        for (let j = 0; j < parseInt(n / 4); j++) {
            for (let k = 0; k < 4; k++) {
                for (let l = 0; l < 4; l++) {
                    arr[i * 4 + k][j * 4 + l] = x;
                    x++;
                }
            }
        }
    }
 
    // Print the generated matrix
    for (let i = 0; i < n; i++) {
        for (let j = 0; j < n; j++) {
            document.write(arr[i][j] + " ");
        }
        document.write("<br>");
    }
}
 
// Driver code
    let n = 4;
 
    findGrid(n);
 
</script>


Output: 

0 1 2 3 
4 5 6 7 
8 9 10 11 
12 13 14 15

 

Time Complexity: O(N2)

Auxiliary Space: O(N2)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments