Tuesday, November 19, 2024
Google search engine
HomeData Modelling & AIEuler’s Four Square Identity

Euler’s Four Square Identity

According to Euler’s four square identity, the product of any two numbers a and b can be expressed as a sum of four squares if a and b both can individually be expressed as the sum of four squares.
Mathematically, if a = c1^2 + c2^2 + c3^2 + c4^2    and b = d1^2 + d2^2 + d3^2 + d4^2
Then, a * b = e1^2 + e2^2 + e3^2 + e4^2
where c1, c2, c3, c4, d1, d2, d3, d4, e1, e2, e3, e4 are any integer.
 

Some examples are,

a = 1^2 + 2^2 + 3^2 + 4^2 = 30
b = 1^2 + 1^2 + 1^2 + 1^2 = 4
ab = a * b = 120 = 2^2 + 4^2 + 6^2 + 8^2
a = 1^2 + 2^2 + 3^2 + 1^2 = 15
b = 2^2 + 3^2 + 4^2 + 5^2 = 24
ab = a * b = 810 = 1^2 + 4^2 + 8^2 + 27^2
a = 1^2 + 2^2 + 3^2 + 1^2 = 15
b = 2^2 + 3^2 + 2^2 + 3^2 = 26
ab = a * b = 390 = 4^2 + 7^2 + 10^2 + 15^2

Example: 

Input: a = 1 * 1 + 2 * 2 + 3 * 3 + 4 * 4
       b = 1 * 1 + 1 * 1 + 1 * 1 + 1 * 1
  
Output: i = 0
j = 2
k = 4
l = 10
Product of 30 and 4 can be written as sum of squares of i, j, k, l
120 = 0 * 0 + 2 * 2 + 4 * 4 + 10 * 10

i = 2
j = 4
k = 6
l = 8
Product of 30 and 4 can be written as sum of squares of i, j, k, l
120 = 2 * 2 + 4 * 4 + 6 * 6 + 8 * 8

Explanation : 
The product of the 2 numbers a(30) and b(4) can be represented as the sum of 4 squares as stated by Euler’s four square identity. The above are the 2 representations of the product a * b in the sum of 4 squares form. All possible representations of the product a*b in the sum of four squares form are shown. 

Input: a = 1*1 + 2*2 + 3*3 + 1*1
       b = 1*1 + 2*2 + 1*1 + 1*1

Output: i = 0
j = 1
k = 2
l = 10
Product of 15 and 7 can be written as sum of squares of i, j, k, l
105 = 0*0 + 1*1 + 2*2 + 10*10

i = 0
j = 4
k = 5
l = 8
Product of 15 and 7 can be written as sum of squares of i, j, k, l
105 = 0*0 + 4*4 + 5*5 + 8*8

i = 1
j = 2
k = 6
l = 8
Product of 15 and 7 can be written as sum of squares of i, j, k, l
105 = 1*1 + 2*2 + 6*6 + 8*8

i = 2
j = 2
k = 4
l = 9
Product of 15 and 7 can be written as sum of squares of i, j, k, l
105 = 2*2 + 2*2 + 4*4 + 9*9

i = 2
j = 4
k = 6
l = 7
Product of 15 and 7 can be written as sum of squares of i, j, k, l
105 = 2*2 + 4*4 + 6*6 + 7*7

i = 3
j = 4
k = 4
l = 8
Product of 15 and 7 can be written as sum of squares of i, j, k, l
105 = 3*3 + 4*4 + 4*4 + 8*8

Approach : 
Brute Force : 
A given number(a*b) can be represented in a sum of 4 squares form by using 4 loops i, j, k, l to find each of the four squares. This gives all possible combinations to form a*b as a sum of four squares. At each iteration of the innermost loop(l loop), check the sum with the product a*b. If there is a match, then print the 4 numbers(i, j, k, and l) whose sum of squares equals a*b. 
 

C++




// CPP code to verify euler's four square identity
#include <bits/stdc++.h>
 
using namespace std;
 
#define show(x) cout << #x << " = " << x << "\n";
 
// function to check euler four square identity
void check_euler_four_square_identity(int a, int b,
                                      int ab)
{
    int s = 0;
     
    // loops checking the sum of squares
    for (int i = 0;i * i <= ab;i ++)
    {
        s = i * i;
        for (int j = i;j * j <= ab;j ++)
        {
            // sum of 2 squares
            s = j * j + i * i;
             
            for (int k = j;k * k <= ab;k ++)
            {
                // sum of 3 squares
                s = k * k + j * j + i * i;
                 
                for (int l = k;l * l <= ab;l ++)
                {
                    // sum of 4 squares
                    s = l * l + k * k + j * j + i * i;
 
                    // product of 2 numbers represented
                    // as sum of four squares i, j, k, l
                    if (s == ab)
                    {
                        // product of 2 numbers a and b
                        // represented as sum of four
                        // squares i, j, k, l
                        show(i);
                        show(j);
                        show(k);
                        show(l);
                        cout <<""
                        << "Product of " << a
                        << " and " << b;
                        cout << " can be written"<<
                        " as sum of squares of i, "<<
                         "j, k, l\n";
                        cout << ab << " = ";
                        cout << i << "*" << i << " + ";
                        cout << j << "*" << j << " + ";
                        cout << k << "*" << k << " + ";
                        cout << l << "*" << l << "\n";
                        cout << "\n";
                    }
                }
            }
        }
    }
}
 
// Driver code
int main()
{
    // a and b such that they can be expressed
    // as sum of squares of numbers
    int a = 30; // 1*1 + 2*2 + 3*3 + 4*4;
    int b = 4;  // 1*1 + 1*1 + 1*1 + 1*1;
 
    // given numbers can be represented as
    // sum of 4 squares By euler's four
    // square identity product also can be
    // represented as sum of 4 squares
    int ab = a * b;
     
    check_euler_four_square_identity(a, b, ab);
     
    return 0;
}


Java




// Java code to verify euler's
// four square identity
import java.io.*;
 
class GFG
{
     
// function to check euler
// four square identity
static void check_euler_four_square_identity(int a,
                                             int b,
                                             int ab)
{
    int s = 0;
     
    // loops checking the
    // sum of squares
    for (int i = 0;
             i * i <= ab; i ++)
    {
        s = i * i;
        for (int j = i;
                 j * j <= ab; j ++)
        {
            // sum of 2 squares
            s = j * j + i * i;
             
            for (int k = j;
                     k * k <= ab; k ++)
            {
                // sum of 3 squares
                s = k * k + j *
                    j + i * i;
                 
                for (int l = k;
                         l * l <= ab; l ++)
                {
                    // sum of 4 squares
                    s = l * l + k * k +
                        j * j + i * i;
 
                    // product of 2 numbers
                    // represented as sum of
                    // four squares i, j, k, l
                    if (s == ab)
                    {
                        // product of 2 numbers
                        // a and b represented
                        // as sum of four squares
                        // i, j, k, l
                        System.out.print("i = " +
                                          i + "\n");
                        System.out.print("j = " +
                                          j + "\n");
                        System.out.print("k = " +
                                          k + "\n");
                        System.out.print("l = " +
                                          l + "\n");
                        System.out.print("Product of " +
                                         a + " and " + b);
                        System.out.print(" can be written"+
                               " as sum of squares of i, "+
                                              "j, k, l\n");
                        System.out.print(ab + " = ");
                        System.out.print(i + "*" +
                                         i + " + ");
                        System.out.print(j + "*" +
                                         j + " + ");
                        System.out.print(k + "*" +
                                         k + " + ");
                        System.out.print(l + "*" +
                                         l + "\n");
                        System.out.println();
                    }
                }
            }
        }
    }
}
 
// Driver code
public static void main (String[] args)
{
    // a and b such that
    // they can be expressed
    // as sum of squares
    // of numbers
    int a = 30; // 1*1 + 2*2 +
                // 3*3 + 4*4;
    int b = 4// 1*1 + 1*1 +
                // 1*1 + 1*1;
 
    // given numbers can be
    // represented as sum of
    // 4 squares By euler's
    // four square identity
    // product also can be
    // represented as sum
    // of 4 squares
    int ab = a * b;
     
    check_euler_four_square_identity(a, b, ab);
}
}
 
// This code is contributed by ajit


Python3




# Python3 code to verify euler's
# four square identity
 
# function to check euler
# four square identity
def check_euler_four_square_identity(a, b, ab):
 
    s = 0;
     
    # loops checking the sum of squares
    i = 0;
    while (i * i <= ab):
     
        s = i * i;
        j = i;
        while (j * j <= ab):
             
            # sum of 2 squares
            s = j * j + i * i;
            k = j;
            while (k * k <= ab):
                 
                # sum of 3 squares
                s = k * k + j * j + i * i;
                l = k;
                while (l * l <= ab):
                     
                    # sum of 4 squares
                    s = l * l + k * k + j * j + i * i;
 
                    # product of 2 numbers represented
                    # as sum of four squares i, j, k, l
                    if (s == ab):
                         
                        # product of 2 numbers a and b
                        # represented as sum of four
                        # squares i, j, k, l
                        print("i =", i);
                        print("j =", j);
                        print("k =", k);
                        print("l =", l);
                        print("Product of ", a,
                              "and", b, end = "");
                        print(" can be written as sum of",
                                  "squares of i, j, k, l");
                        print(ab, "= ", end = "");
                        print(i, "*", i, "+ ", end = "");
                        print(j, "*", j, "+ ", end = "");
                        print(k, "*", k, "+ ", end = "");
                        print(l, "*", l);
                        print("");
                    l += 1;
                k += 1;
            j += 1;
        i += 1;
 
# Driver code
 
# a and b such that they can be expressed
# as sum of squares of numbers
a = 30; # 1*1 + 2*2 + 3*3 + 4*4;
b = 4; # 1*1 + 1*1 + 1*1 + 1*1;
 
# given numbers can be represented as
# sum of 4 squares By euler's four
# square identity product also can be
# represented as sum of 4 squares
ab = a * b;
 
check_euler_four_square_identity(a, b, ab);
 
# This code is contributed
# by mits


C#




// C# code to verify euler's
// four square identity
using System;
 
class GFG
{
    // function to check euler
    // four square identity
    static void check_euler_four_square_identity(int a,
                                                 int b,
                                                 int ab)
    {
        int s = 0;
         
        // loops checking the
        // sum of squares
        for (int i = 0; i * i <= ab; i ++)
        {
            s = i * i;
            for (int j = i; j * j <= ab; j ++)
            {
                // sum of 2 squares
                s = j * j + i * i;
                 
                for (int k = j; k * k <= ab; k ++)
                {
                    // sum of 3 squares
                    s = k * k + j *
                        j + i * i;
                     
                    for (int l = k; l * l <= ab; l ++)
                    {
                        // sum of 4 squares
                        s = l * l + k * k +
                            j * j + i * i;
     
                        // product of 2 numbers
                        // represented as sum of
                        // four squares i, j, k, l
                        if (s == ab)
                        {
                            // product of 2 numbers a
                            // and b represented as 
                            // sum of four squares i, j, k, l
                            Console.Write("i = " + i + "\n");
                            Console.Write("j = " + j + "\n");
                            Console.Write("k = " + k + "\n");
                            Console.Write("l = " + l + "\n");
                            Console.Write("Product of " + a +
                                                " and " + b);
                            Console.Write(" can be written"+
                                " as sum of squares of i, "+
                                               "j, k, l\n");
                            Console.Write(ab + " = ");
                            Console.Write(i + "*" + i + " + ");
                            Console.Write(j + "*" + j + " + ");
                            Console.Write(k + "*" + k + " + ");
                            Console.Write(l + "*" + l + "\n");
                            Console.Write("\n");
                        }
                    }
                }
            }
        }
    }
     
    // Driver code
    static void Main()
    {
        // a and b such that
        // they can be expressed
        // as sum of squares of numbers
        int a = 30; // 1*1 + 2*2 + 3*3 + 4*4;
        int b = 4; // 1*1 + 1*1 + 1*1 + 1*1;
     
        // given numbers can be
        // represented as sum of
        // 4 squares By euler's
        // four square identity
        // product also can be
        // represented as sum
        // of 4 squares
        int ab = a * b;
         
        check_euler_four_square_identity(a, b, ab);
    }
}
 
// This code is contributed by
// Manish Shaw(manishshaw1)


PHP




<?php
// PHP code to verify euler's
// four square identity
 
// function to check euler
// four square identity
function check_euler_four_square_identity($a, $b, $ab)
{
    $s = 0;
     
    // loops checking the sum of squares
    for ($i = 0; $i * $i <= $ab; $i ++)
    {
        $s = $i * $i;
        for ($j = $i; $j * $j <= $ab; $j ++)
        {
            // sum of 2 squares
            $s = $j * $j + $i * $i;
             
            for ($k = $j; $k * $k <= $ab; $k ++)
            {
                // sum of 3 squares
                $s = $k * $k + $j * $j + $i * $i;
                 
                for ($l = $k; $l * $l <= $ab; $l ++)
                {
                    // sum of 4 squares
                    $s = $l * $l + $k * $k +
                         $j * $j + $i * $i;
 
                    // product of 2 numbers represented
                    // as sum of four squares i, j, k, l
                    if ($s == $ab)
                    {
                        // product of 2 numbers a and b
                        // represented as sum of four
                        // squares i, j, k, l
                        echo("i = " . $i . "\n");
                        echo("j = " . $j . "\n");
                        echo("k = " . $k . "\n");
                        echo("l = " . $l . "\n");
                        echo "". "Product of " .
                            $a . " and " . $b;
                        echo " can be written".
                             " as sum of squares of i, " .
                                              "j, k, l\n";
                        echo $ab . " = ";
                        echo $i . "*" . $i. " + ";
                        echo $j . "*" . $j . " + ";
                        echo $k . "*" . $k . " + ";
                        echo $l . "*" . $l . "\n";
                        echo "\n";
                    }
                }
            }
        }
    }
}
 
// Driver code
 
// a and b such that they can be expressed
// as sum of squares of numbers
$a = 30; // 1*1 + 2*2 + 3*3 + 4*4;
$b = 4; // 1*1 + 1*1 + 1*1 + 1*1;
 
// given numbers can be represented as
// sum of 4 squares By euler's four
// square identity product also can be
// represented as sum of 4 squares
$ab = $a * $b;
 
check_euler_four_square_identity($a, $b, $ab);
 
// This code is contributed
// by Abby_akku
?>


Javascript




<script>
 
    // Javascript code to verify euler's
    // four square identity
     
    // function to check euler
    // four square identity
    function check_euler_four_square_identity(a, b, ab)
    {
        let s = 0;
           
        // loops checking the
        // sum of squares
        for (let i = 0; i * i <= ab; i ++)
        {
            s = i * i;
            for (let j = i; j * j <= ab; j ++)
            {
                // sum of 2 squares
                s = j * j + i * i;
                   
                for (let k = j; k * k <= ab; k ++)
                {
                    // sum of 3 squares
                    s = k * k + j *
                        j + i * i;
                       
                    for (let l = k; l * l <= ab; l ++)
                    {
                        // sum of 4 squares
                        s = l * l + k * k +
                            j * j + i * i;
       
                        // product of 2 numbers
                        // represented as sum of
                        // four squares i, j, k, l
                        if (s == ab)
                        {
                            // product of 2 numbers a
                            // and b represented as 
                            // sum of four squares
                            // i, j, k, l
                            document.write("i = " + i +
                            "</br>");
                            document.write("j = " + j +
                            "</br>");
                            document.write("k = " + k +
                            "</br>");
                            document.write("l = " + l +
                            "</br>");
                            document.write("Product of " + a +
                                                " and " + b);
                            document.write(" can be written"+
                                " as sum of squares of i, "+
                                               "j, k, l" +
                                               "</br>");
                            document.write(ab + " = ");
                            document.write(i + "*" + i +
                            " + ");
                            document.write(j + "*" + j +
                            " + ");
                            document.write(k + "*" + k +
                            " + ");
                            document.write(l + "*" + l +
                            "</br>");
                            document.write("</br>");
                        }
                    }
                }
            }
        }
    }
     
    // a and b such that
    // they can be expressed
    // as sum of squares of numbers
    let a = 30; // 1*1 + 2*2 + 3*3 + 4*4;
    let b = 4; // 1*1 + 1*1 + 1*1 + 1*1;
 
    // given numbers can be
    // represented as sum of
    // 4 squares By euler's
    // four square identity
    // product also can be
    // represented as sum
    // of 4 squares
    let ab = a * b;
 
    check_euler_four_square_identity(a, b, ab);
     
</script>


Output: 

i = 0
j = 2
k = 4
l = 10
Product of 30 and 4 can be written as sum of squares of i, j, k, l
120 = 0*0 + 2*2 + 4*4 + 10*10

i = 2
j = 4
k = 6
l = 8
Product of 30 and 4 can be written as sum of squares of i, j, k, l
120 = 2*2 + 4*4 + 6*6 + 8*8

 

Improved Algorithm:
The time complexity of the above algorithm is O((a*b)^4)    in the worst case. This can be reduced to O((a*b)^3) by subtracting the squares of i, j, and k from the product a*b for all (i, j, k) and checking if that value is a perfect square or not. If it is a perfect square, then we have found the solution. 
 

C++




// CPP code to verify Euler's four-square identity
#include<bits/stdc++.h>
using namespace std;
 
// This function prints the four numbers
// if a solution is found Else prints
// solution doesn't exist
void checkEulerFourSquareIdentity(int a, int b)
{
    // Number for which we want to
    // find a solution
    int ab = a * b;
    bool flag = false;
     
    int i = 0;
    while(i * i <= ab) // loop for first number
    {
        int j = i;
        while (i * i + j * j <= ab) // loop for second number
        {
            int k = j;
            while(i * i + j * j +
                k * k <= ab) // loop for third number
            {
                // Calculate the fourth number
                // and apply square root
                double l = sqrt(ab - (i * i + j *
                                        j + k * k));
                 
                // Check if the fourthNum is Integer or
                // not. If yes, then solution is found
                if (floor(l) == ceil(l) && l >= k)
                {
                    flag = true;
                    cout<<"i = " << i << "\n";
                    cout<<"j = " << j << "\n";
                    cout<<"k = " << k << "\n";
                    cout<<"l = " << (int)l << "\n";
                    cout<<"Product of " << a << " and "<< b <<
                                " can be written as sum of squares"<<
                                                " of i, j, k, l \n";
                                                 
                    cout<<ab + " = " << i << "*" << i << " + " <<
                                        j << "*" << j<< " + " << k << "*" <<
                                            k << " + " << (int)l << "*" <<
                                                        (int)l << "\n";
                     
                }
                k += 1;
            }
            j += 1;
        }
        i += 1;
    }
     
    // Solution cannot be found
    if (flag == false)
    {
        cout<< "Solution doesn't exist!\n";
        return ;
    }
}
 
// Driver Code
int main()
{
    int a = 30;
    int b = 4;
    checkEulerFourSquareIdentity(a, b);
    return 0;
}
 
// This code is contributed by mits


Java




// Java code to verify Euler's four-square identity
class GFG
{
     
// This function prints the four numbers
// if a solution is found Else prints
// solution doesn't exist
public static void checkEulerFourSquareIdentity(int a,
                                                int b)
{
    // Number for which we want to
    // find a solution
    int ab = a * b;
    boolean flag = false;
     
    int i = 0;
    while(i * i <= ab) // loop for first number
    {
        int j = i;
        while (i * i + j * j <= ab) // loop for second number
        {
            int k = j;
            while(i * i + j * j +
                  k * k <= ab) // loop for third number
            {
                // Calculate the fourth number
                // and apply square root
                double l = Math.sqrt(ab - (i * i + j *
                                           j + k * k));
                 
                // Check if the fourthNum is Integer or
                // not. If yes, then solution is found
                if (Math.floor(l) == Math.ceil(l) && l >= k)
                {
                    flag = true;
                    System.out.print("i = "  + i + "\n");
                    System.out.print("j = " + j + "\n");
                    System.out.print("k = " + k + "\n");
                    System.out.print("l = " + (int)l + "\n");
                    System.out.print("Product of " + a + " and "+ b +
                                 " can be written as sum of squares"+
                                                " of i, j, k, l \n");
                                                 
                    System.out.print(ab + " = " + i + "*" + i + " + " +
                                        j + "*" + j + " + " + k + "*" +
                                             k + " + " + (int)l + "*" +
                                                        (int)l + "\n");
                     
                }
                k += 1;
            }
            j += 1;
        }
        i += 1;
    }
     
    // Solution cannot be found
    if (flag == false)
    {
        System.out.println("Solution doesn't exist!");
        return ;
    }
}
 
// Driver Code
public static void main(String[] args)
{
    int a = 30;
    int b = 4;
    checkEulerFourSquareIdentity(a, b);
}
}
 
// This code is contributed by mits


Python3




# Python3 code to verify Euler's four-square identity
# This function prints the four numbers if a solution is found
# Else prints solution doesn't exist
def checkEulerFourSquareIdentity(a, b):
 
    # Number for which we want to find a solution
    ab = a*b
    flag = False
     
    i = 0
    while i*i <= ab: # loop for first number
         
        j = i
        while i*i + j*j <= ab: # loop for second number
         
            k = j
            while i*i + j*j + k*k <= ab: # loop for third number
                 
                # Calculate the fourth number and apply square root
                l = (ab - (i*i + j*j + k*k))**(0.5)
                 
                # Check if the fourthNum is Integer or not
                # If yes, then solution is found
                if l == int(l) and l >= k:
                    flag = True
                    print("i = ",i)
                    print("j = ",j)
                    print("k = ",k)
                    print("l = ",l)
                    print("Product of", a , "and" , b ,
                          "can be written as sum of squares of i, j, k, l" )
                    print(ab," = ",i,"*",i,"+",j,"*",j,"+",
                          k,"*",k,"+",l,"*",l)
                     
                     
                k += 1
             
            j += 1
         
        i += 1
         
    # Solution cannot be found
    if flag == False:
        print("Solution doesn't exist!")
        return
 
a, b = 30, 4
checkEulerFourSquareIdentity(a,b)


C#




// C# code to verify Euler's four-square identity
using System;
 
class GFG
{
     
// This function prints the four numbers
// if a solution is found Else prints
// solution doesn't exist
public static void checkEulerFourSquareIdentity(int a,
                                                int b)
{
    // Number for which we want to
    // find a solution
    int ab = a * b;
    bool flag = false;
     
    int i = 0;
    while(i * i <= ab) // loop for first number
    {
        int j = i;
        while (i * i + j * j <= ab) // loop for second number
        {
            int k = j;
            while(i * i + j * j +
                  k * k <= ab) // loop for third number
            {
                // Calculate the fourth number
                // and apply square root
                double l = Math.Sqrt(ab - (i * i + j *
                                           j + k * k));
                 
                // Check if the fourthNum is Integer or
                // not. If yes, then solution is found
                if (Math.Floor(l) == Math.Ceiling(l) && l >= k)
                {
                    flag = true;
                    Console.Write("i = " + i + "\n");
                    Console.Write("j = " + j + "\n");
                    Console.Write("k = " + k + "\n");
                    Console.Write("l = " + (int)l + "\n");
                    Console.Write("Product of " + a + " and "+ b +
                              " can be written as sum of squares"+
                                             " of i, j, k, l \n");
                                                 
                    Console.Write(ab + " = " + i + "*" + i + " + " +
                                     j + "*" + j + " + " + k + "*" +
                                          k + " + " + (int)l + "*" +
                                                      (int)l + "\n");
                     
                }
                k += 1;
            }
            j += 1;
        }
        i += 1;
    }
     
    // Solution cannot be found
    if (flag == false)
    {
        Console.WriteLine("Solution doesn't exist!");
        return ;
    }
}
 
// Driver Code
public static void Main()
{
    int a = 30;
    int b = 4;
    checkEulerFourSquareIdentity(a, b);
}
}
 
// This code is contributed by mits


PHP




<?php
// PHP code to verify Euler's four-square identity
 
// This function prints the four numbers
// if a solution is found Else prints
// solution doesn't exist
function checkEulerFourSquareIdentity($a, $b)
{
    // Number for which we want to
    // find a solution
    $ab = $a * $b;
    $flag = false;
     
    $i = 0;
    while($i * $i <= $ab) // loop for first number
    {
        $j = $i;
        while ($i * $i + $j * $j <= $ab) // loop for second number
        {
            $k = $j;
            while($i * $i + $j * $j +
                  $k * $k <= $ab) // loop for third number
            {
                // Calculate the fourth number
                // and apply square root
                $l = sqrt($ab - ($i * $i + $j *
                                 $j + $k * $k));
                 
                // Check if the fourthNum is Integer or
                // not. If yes, then solution is found
                if (floor($l) == ceil($l) && $l >= $k)
                {
                    $flag = true;
                    print("i = " . $i . "\n");
                    print("j = " . $j . "\n");
                    print("k = " . $k . "\n");
                    print("l = " . $l . "\n");
                    print("Product of " . $a . " and " . $b .
                          " can be written as sum of squares" .
                                          " of i, j, k, l \n");
                    print($ab . " = " . $i . "*" . $i . " + " .
                          $j . "*" . $j . " + " . $k . "*" .
                          $k . " + " . $l . "*" . $l . "\n");
                     
                }
                $k += 1;
            }
            $j += 1;
        }
        $i += 1;
    }
    // Solution cannot be found
    if ($flag == false)
    {
        print("Solution doesn't exist!");
        return 0;
    }
}
 
// Driver Code
$a = 30;
$b = 4;
checkEulerFourSquareIdentity($a, $b);
 
// This code is contributed by mits
?>


Javascript




<script>
    // Javascript code to verify Euler's four-square identity
     
    // This function prints the four numbers
    // if a solution is found Else prints
    // solution doesn't exist
    function checkEulerFourSquareIdentity(a, b)
    {
        // Number for which we want to
        // find a solution
        let ab = a * b;
        let flag = false;
 
        let i = 0;
        while(i * i <= ab) // loop for first number
        {
            let j = i;
            while (i * i + j * j <= ab) // loop for second number
            {
                let k = j;
                while(i * i + j * j +
                      k * k <= ab) // loop for third number
                {
                    // Calculate the fourth number
                    // and apply square root
                    let l = Math.sqrt(ab - (i * i + j * j + k * k));
 
                    // Check if the fourthNum is Integer or
                    // not. If yes, then solution is found
                    if (Math.floor(l) == Math.ceil(l) && l >= k)
                    {
                        flag = true;
                        document.write("i = " + i + "</br>");
                        document.write("j = " + j + "</br>");
                        document.write("k = " + k + "</br>");
                        document.write("l = " + l + "</br>");
                        document.write("Product of " + a + " and "+ b +
                                  " can be written as sum of squares"+
                                                 " of i, j, k, l " + "</br>");
 
                        document.write(ab + " = " + i + "*" + i + " + " +
                                         j + "*" + j + " + " + k + "*" +
                                              k + " + " + l + "*" +
                                                          l + "</br>");
 
                    }
                    k += 1;
                }
                j += 1;
            }
            i += 1;
        }
 
        // Solution cannot be found
        if (flag == false)
        {
            document.write("Solution doesn't exist!" + "</br>");
            return;
        }
    }
     
    let a = 30;
    let b = 4;
    checkEulerFourSquareIdentity(a, b);
 
</script>


Output:  

 
i = 0
j = 2
k = 4
l = 10
Product of 30 and 4 can be written as sum of squares of i, j, k, l
120 = 0*0 + 2*2 + 4*4 + 10*10
i = 2
j = 4
k = 6
l = 8
Product of 30 and 4 can be written as sum of squares of i, j, k, l
120 = 2*2 + 4*4 + 6*6 + 8*8

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments