Sunday, November 17, 2024
Google search engine
HomeData Modelling & AIEntringer Number

Entringer Number

The Entringer Number E(n, k) are the number of permutations of {1, 2, …, n + 1}, starting with k + 1, which, after initially falling, alternatively fall then rise. The Entringer are given by: 

For example, for n = 4 and k = 2, E(4, 2) is 4. 
They are: 
3 2 4 1 5 
3 2 5 1 4 
3 1 4 2 5 
3 1 5 2 4

Examples : 

Input : n = 4, k = 2
Output : 4

Input : n = 4, k = 3
Output : 5

Below is program to find Entringer Number E(n, k). The program is based on above simple recursive formula. 

C++




// CPP Program to find Entringer Number E(n, k)
#include <bits/stdc++.h>
using namespace std;
 
// Return Entringer Number E(n, k)
int zigzag(int n, int k)
{
    // Base Case
    if (n == 0 && k == 0)
        return 1;
 
    // Base Case
    if (k == 0)
        return 0;
 
    // Recursive step
    return zigzag(n, k - 1) +
           zigzag(n - 1, n - k);
}
 
// Driven Program
int main()
{
    int n = 4, k = 3;
    cout << zigzag(n, k) << endl;
    return 0;
}


Java




// JAVA Code For Entringer Number
import java.util.*;
 
class GFG {
     
    // Return Entringer Number E(n, k)
    static int zigzag(int n, int k)
    {
        // Base Case
        if (n == 0 && k == 0)
            return 1;
      
        // Base Case
        if (k == 0)
            return 0;
      
        // Recursive step
        return zigzag(n, k - 1) +
               zigzag(n - 1, n - k);
    }
     
    /* Driver program to test above function */
    public static void main(String[] args)
    {
        int n = 4, k = 3;
        System.out.println(zigzag(n, k));
         
    }
}
 
// This code is contributed by Arnav Kr. Mandal.


Python3




# Python Program to find Entringer Number E(n, k)
 
# Return Entringer Number E(n, k)
def zigzag(n, k):
 
    # Base Case
    if (n == 0 and k == 0):
        return 1
 
    # Base Case
    if (k == 0):
        return 0
 
    # Recursive step
    return zigzag(n, k - 1) + zigzag(n - 1, n - k);
 
# Driven Program
n = 4
k = 3
print(zigzag(n, k))
 
# This code is contributed by
# Smitha Dinesh Semwal   


C#




// C# Code For Entringer Number
using System;
 
class GFG {
 
    // Return Entringer Number E(n, k)
    static int zigzag(int n, int k)
    {
        // Base Case
        if (n == 0 && k == 0)
            return 1;
 
        // Base Case
        if (k == 0)
            return 0;
 
        // Recursive step
        return zigzag(n, k - 1) +
               zigzag(n - 1, n - k);
    }
 
    /* Driver program to test above function */
    public static void Main()
    {
        int n = 4, k = 3;
        Console.WriteLine(zigzag(n, k));
    }
}
 
// This code is contributed by vt_m.


PHP




<?php
// PHP Program to find
// Entringer Number E(n, k)
 
// Return Entringer Number E(n, k)
function zigzag($n, $k)
{
    // Base Case
    if ($n == 0 and $k == 0)
        return 1;
 
    // Base Case
    if ($k == 0)
        return 0;
 
    // Recursive step
    return zigzag($n, $k - 1) +
        zigzag($n - 1,$n - $k);
}
 
// Driven Code
$n = 4; $k = 3;
echo zigzag($n, $k) ;
 
// This code is contributed by anuj_67.
?>


Javascript




<script>
//  Program to find Entringer Number E(n, k)
 
// Return Entringer Number E(n, k)
function zigzag( n, k)
{
    // Base Case
    if (n == 0 && k == 0)
        return 1;
  
    // Base Case
    if (k == 0)
        return 0;
  
    // Recursive step
    return zigzag(n, k - 1) +
           zigzag(n - 1, n - k);
}
  
// Driven Program
 
     n = 4;
     k = 3;
    document.write( zigzag(n, k));
//This code is contributed by sweetyty
</script>


Output

5

Below is the implementation of finding Entringer Number using Dynamic Programming: 

C++




// CPP Program to find Entringer Number E(n, k)
#include <bits/stdc++.h>
using namespace std;
 
// Return Entringer Number E(n, k)
int zigzag(int n, int k)
{
    int dp[n + 1][k + 1];
    memset(dp, 0, sizeof(dp));
 
    // Base cases
    dp[0][0] = 1;
    for (int i = 1; i <= n; i++)
        dp[i][0] = 0;
 
    // Finding dp[i][j]
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= i; j++)
            dp[i][j] = dp[i][j - 1] + dp[i - 1][i - j];
    }
    return dp[n][k];
}
 
// Driven Program
int main()
{
    int n = 4, k = 3;
    cout << zigzag(n, k) << endl;
    return 0;
}


Java




// JAVA Code For Entringer Number
import java.util.*;
 
class GFG {
     
    // Return Entringer Number E(n, k)
    static int zigzag(int n, int k)
    {
        int dp[][] = new int[n + 1][k + 1];
        
        // Base cases
        dp[0][0] = 1;
        for (int i = 1; i <= n; i++)
            dp[i][0] = 0;   
      
        // Finding dp[i][j]
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= Math.min(i, k);
                                          j++)
                dp[i][j] = dp[i][j - 1] +
                           dp[i - 1][i - j];
            }
      
        return dp[n][k];
    }
     
    /* Driver program to test above function */
    public static void main(String[] args)
    {
        int n = 4, k = 3;
        System.out.println(zigzag(n, k));
    }
}
     
// This code is contributed by Arnav Kr. Mandal.   


Python3




# Python3 Program to find Entringer
# Number E(n, k)
 
# Return Entringer Number E(n, k)
def zigzag(n, k):
    dp = [[0 for x in range(k+1)]
             for y in range(n+1)]
 
    # Base cases
    dp[0][0] = 1
    for i in range(1, n+1):
        dp[i][0] = 0
 
    # Finding dp[i][j]
    for i in range(1, n+1):
        for j in range(1, k+1):
            dp[i][j] = (dp[i][j - 1]
                 + dp[i - 1][i - j])
                         
    return dp[n][k]
 
# Driven Program
n = 4
k = 3
print(zigzag(n, k))
 
# This code is contributed by
# Prasad Kshirsagar


C#




// C# Code For Entringer Number
using System;
 
class GFG {
 
    // Return Entringer Number E(n, k)
    static int zigzag(int n, int k)
    {
        int[, ] dp = new int[n + 1, k + 1];
 
        // Base cases
        dp[0, 0] = 1;
        for (int i = 1; i <= n; i++)
            dp[i, 0] = 0;
 
        // Finding dp[i][j]
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= Math.Min(i, k);
                j++)
                dp[i, j] = dp[i, j - 1] + dp[i - 1, i - j];
        }
 
        return dp[n, k];
    }
 
    /* Driver program to test above function */
    public static void Main()
    {
        int n = 4, k = 3;
        Console.WriteLine(zigzag(n, k));
    }
}
 
// This code is contributed by vt_m.


PHP




<?php
// PHP Program to find
// Entringer Number E(n, k)
 
// Return Entringer Number E(n, k)
function zigzag($n, $k)
{
    $dp = array(array());
     
 
    // Base cases
    $dp[0][0] = 1;
    for ($i = 1; $i <= $n; $i++)
        $dp[$i][0] = 0;
 
    // Finding dp[i][j]
    for ($i = 1; $i <= $n; $i++)
    {
        for ($j = 1; $j <= $i; $j++)
            $dp[$i][$j] = $dp[$i][$j - 1] +
                          $dp[$i - 1][$i - $j];
    }
    return $dp[$n][$k];
}
 
// Driven Code
$n = 4; $k = 3;
echo zigzag($n, $k);
 
// This code is contributed by anuj_67.
?>


Javascript




<script>
 
// JavaScript program For Entringer Number
 
    // Return Entringer Number E(n, k)
    function zigzag(n, k)
    {
        let dp = new Array(n+1);
         
        // Loop to create 2D array using 1D array
        for (var i = 0; i < dp.length; i++) {
            dp[i] = new Array(2);
        }
          
        // Base cases
        dp[0][0] = 1;
        for (let i = 1; i <= n; i++)
            dp[i][0] = 0;   
        
        // Finding dp[i][j]
        for (let i = 1; i <= n; i++) {
            for (let j = 1; j <= Math.min(i, k);
                                          j++)
                dp[i][j] = dp[i][j - 1] +
                           dp[i - 1][i - j];
            }
        
        return dp[n][k];
    }
 
// Driver code
 
        let n = 4, k = 3;
        document.write(zigzag(n, k));
                             
</script>


Output

5

Time Complexity: O(n * n)
Auxiliary Space: O(n * k)

Efficient approach : Space optimization

In previous approach the current value dp[i][j] is only depend upon the current and previous row values of DP. So to optimize the space complexity we use a single 1D array to store the computations.

Implementation steps:

  • Create a 1D vector dp of size K+1.
  • Set a base case by initializing the values of DP .
  • Now iterate over subproblems by the help of nested loop and get the current value from previous computations.
  • Now Create a temporary 1d vector curr used to store the current values from previous computations.
  • After every iteration assign the value of curr to dp for further iteration.
  • At last return and print the final answer stored in dp[k].

Implementation:

C++




// CPP Program to find Entringer Number E(n, k)
#include <bits/stdc++.h>
using namespace std;
 
// Return Entringer Number E(n, k)
int zigzag(int n, int k)
{
    // vector to store values
    vector<int>dp(k+1,0);
     
 
    // Base cases
    dp[0] = 1;
     
 
    // iterate to get current value from previous value
    for (int i = 1; i <= n; i++) {
        vector<int>curr(k+1,0);
        for (int j = 1; j <= i; j++){
            curr[j] = curr[j - 1] + dp[i - j];
        }
        // assigning values to iterate further
        dp = curr;
    }
     
    // return final answer
    return dp[k];
}
 
// Driven Program
int main()
{
    int n = 4, k = 3;
    cout << zigzag(n, k) << endl;
    return 0;
}


Java




import java.util.*;
 
public class Main {
    // Return Entringer Number E(n, k)
    public static int zigzag(int n, int k) {
        // array to store values
        int[] dp = new int[n+1];
        Arrays.fill(dp, 0);
 
        // Base cases
        dp[0] = 1;
 
        // iterate to get current value from previous value
        for (int i = 1; i <= n; i++) {
            int[] curr = new int[n+1];
            Arrays.fill(curr, 0);
            for (int j = 1; j <= i; j++){
                curr[j] = curr[j - 1] + dp[i - j];
            }
            // assigning values to iterate further
              dp = curr;
        }
 
        // return final answer
        return dp[k];
    }
 
    // Driven Program
    public static void main(String[] args) {
        int n = 4, k = 3;
        System.out.println(zigzag(n, k));
    }
}


C#




using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
 
class Program {
    // Return Entringer Number E(n, k)
    public static int zigzag(int n, int k)
    {
        // array to store values
        int[] dp = new int[n + 1];
        // fill array with 0
        Array.Fill(dp, 0);
 
        // Base cases
        dp[0] = 1;
 
        // iterate to get current value from previous value
        for (int i = 1; i <= n; i++) {
            // create a new array to store current values
            int[] curr = new int[n + 1];
            // fill array with 0
            Array.Fill(curr, 0);
            for (int j = 1; j <= i; j++) {
                // assign values to current array
                curr[j] = curr[j - 1] + dp[i - j];
            }
            // assigning values to iterate further
            dp = curr;
        }
 
        // return final answer
        return dp[k];
    }
 
    static void Main(string[] args)
    {
        int n = 4, k = 3;
        Console.WriteLine(zigzag(n, k));
    }
}


Javascript




// Function to calculate Entringer Number E(n, k)
function zigzag(n, k) {
    // Array to store values
    let dp = new Array(k + 1).fill(0);
 
    // Base cases
    dp[0] = 1;
 
    // Iterate to get current value from previous value
    for (let i = 1; i <= n; i++) {
        let curr = new Array(k + 1).fill(0);
        for (let j = 1; j <= i; j++) {
            curr[j] = curr[j - 1] + dp[i - j];
        }
        // Assigning values to iterate further
        dp = curr;
    }
 
    // Return final answer
    return dp[k];
}
 
// Main function to test the zigzag function
function main() {
    let n = 4; // The value of n
    let k = 3; // The value of k
    let ans = zigzag(n, k); // Calculate the Entringer Number
    console.log(ans); // Print the result
}
 
main();
 
// This code is contributed by sarojmcy2e


Output

5

Time complexity: O(N*K)
Auxiliary Space: O(K)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments