Sunday, November 17, 2024
Google search engine
HomeData Modelling & AIDouble Order Traversal of a Binary Tree

Double Order Traversal of a Binary Tree

Given a Binary Tree consisting of N nodes, the task is to print its Double Order Traversal.

Double Order Traversal is a tree traversal technique in which every node is traversed twice in the following order: 

  • Visit the Node.
  • Traverse the Left Subtree.
  • Visit the Node.
  • Traverse the Right Subtree.

Examples:

Input:
        1
      /   \
     7     3
    / \   /
   4   5 6
Output: 1 7 4 4 7 5 5 1 3 6 6 3 

Input:
        1
      /   \
     7     3
    / \     \
   4   5     6
Output: 1 7 4 4 7 5 5 1 3 3 6 6

Approach: 
The idea is to perform Inorder Traversal recursively on the given Binary Tree and print the node value on visiting a vertex and after the recursive call to the left subtree during the traversal. 

Follow the steps below to solve the problem: 

  • Start Inorder traversal from the root. 
  • If the current node does not exist, simply return from it.
  • Otherwise:
    • Print the value of the current node.
    • Recursively traverse the left subtree.
    • Again, print the current node.
    • Recursively traverse the right subtree.
  • Repeat the above steps until all nodes in the tree are visited.

Below is the implementation of the above approach: 

C++




// C++ Program to implement
// the above approach
#include <iostream>
using namespace std;
 
// Node Structure
struct node {
    char data;
    struct node *left, *right;
};
 
// Function to create new node
struct node* newNode(char ch)
{
    // Allocate a new node in memory
    struct node* Node = new node();
    Node->data = ch;
    Node->left = NULL;
    Node->right = NULL;
    return Node;
}
 
// Function to print Double Order traversal
void doubleOrderTraversal(struct node* root)
{
    if (!root)
        return;
 
    // Print Node Value
    cout << root->data << " ";
 
    // Traverse Left Subtree
    doubleOrderTraversal(root->left);
 
    // Print Node Value
    cout << root->data << " ";
 
    // Traverse Right SubTree
    doubleOrderTraversal(root->right);
}
 
// Driver Code
int main()
{
    struct node* root = newNode('1');
    root->left = newNode('7');
    root->right = newNode('3');
    root->left->left = newNode('4');
    root->left->right = newNode('5');
    root->right->right = newNode('6');
 
    doubleOrderTraversal(root);
    return 0;
}


Java




// Java program to implement
// the above approach
class GFG{
 
// Node Structure
static class node
{
    char data;
    node left, right;
};
 
// Function to create new node
static node newNode(char ch)
{
     
    // Allocate a new node in memory
    node n = new node();
    n.data = ch;
    n.left = null;
    n.right = null;
    return n;
}
 
// Function to print Double Order traversal
static void doubleOrderTraversal(node root)
{
    if (root == null)
        return;
 
    // Print Node Value
    System.out.print(root.data + " ");
 
    // Traverse Left Subtree
    doubleOrderTraversal(root.left);
 
    // Print Node Value
    System.out.print(root.data + " ");
 
    // Traverse Right SubTree
    doubleOrderTraversal(root.right);
}
 
// Driver Code
public static void main(String[] args)
{
    node root = newNode('1');
    root.left = newNode('7');
    root.right = newNode('3');
    root.left.left = newNode('4');
    root.left.right = newNode('5');
    root.right.right = newNode('6');
 
    doubleOrderTraversal(root);
}
}
 
// This code is contributed by gauravrajput1


Python3




# Python3 program to implement
# the above approach
 
# Node Structure
class Node:
 
    # Initialise new node
    def __init__(self, ch):
         
        self.data = ch
        self.left = None
        self.right = None
 
# Function to print Double Order traversal
def doubleOrderTraveersal(root):
     
    if not root:
        return
 
    # Print node value
    print(root.data, end = " ")
 
    # Traverse left subtree
    doubleOrderTraveersal(root.left)
 
    # Print node value
    print(root.data, end = " ")
 
    # Traverse right subtree
    doubleOrderTraveersal(root.right)
 
# Driver code
if __name__ == '__main__':
 
    root = Node(1)
    root.left = Node(7)
    root.right = Node(3)
    root.left.left = Node(4)
    root.left.right = Node(5)
    root.right.right = Node(6)
     
    doubleOrderTraveersal(root)
 
# This code is contributed by Shivam Singh


C#




// C# program to implement
// the above approach
using System;
class GFG{
 
// Node Structure
class node
{
    public char data;
    public node left, right;
};
 
// Function to create new node
static node newNode(char ch)
{
     
    // Allocate a new node in memory
    node n = new node();
    n.data = ch;
    n.left = null;
    n.right = null;
    return n;
}
 
// Function to print Double Order traversal
static void doubleOrderTraversal(node root)
{
    if (root == null)
        return;
 
    // Print Node Value
    Console.Write(root.data + " ");
 
    // Traverse Left Subtree
    doubleOrderTraversal(root.left);
 
    // Print Node Value
    Console.Write(root.data + " ");
 
    // Traverse Right SubTree
    doubleOrderTraversal(root.right);
}
 
// Driver Code
public static void Main(String[] args)
{
    node root = newNode('1');
    root.left = newNode('7');
    root.right = newNode('3');
    root.left.left = newNode('4');
    root.left.right = newNode('5');
    root.right.right = newNode('6');
 
    doubleOrderTraversal(root);
}
}
 
// This code is contributed by gauravrajput1


Javascript




<script>
 
// Javascript program to implement
// the above approach
 
// Node Structure
class node
{
    constructor()
    {
        this.data = 0;
        this.left = null;
        this.right = null;
    }
};
 
// Function to create new node
function newNode(ch)
{
     
    // Allocate a new node in memory
    var n = new node();
    n.data = ch;
    n.left = null;
    n.right = null;
    return n;
}
 
// Function to print Double Order traversal
function doubleOrderTraversal(root)
{
    if (root == null)
        return;
 
    // Print Node Value
    document.write(root.data + " ");
 
    // Traverse Left Subtree
    doubleOrderTraversal(root.left);
 
    // Print Node Value
    document.write(root.data + " ");
 
    // Traverse Right SubTree
    doubleOrderTraversal(root.right);
}
 
// Driver Code
var root = newNode('1');
root.left = newNode('7');
root.right = newNode('3');
root.left.left = newNode('4');
root.left.right = newNode('5');
root.right.right = newNode('6');
doubleOrderTraversal(root);
 
 
</script>


Output: 

1 7 4 4 7 5 5 1 3 3 6 6

 

Time Complexity: O(N) 
Auxiliary Space: O(1)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments