Sunday, November 17, 2024
Google search engine
HomeData Modelling & AICut all the rods with some length such that the sum of...

Cut all the rods with some length such that the sum of cut-off length is maximized

Given N rods of different lengths. The task is to cut all the rods with some maximum integer height ‘h’ such that the sum of cut-off lengths of the rod is maximized and must be greater than M. Print -1 if no such cut is possible. 
Note: A rod cannot be cut also. 
Examples:
 

Input: N = 7, M = 8, a[] = {1, 2, 3, 5, 4, 7, 6} 
Output:
Rod 1 and 2 are untouched, and rod 3, 4, 5, 6, 7 are cut with the cut-off lengths being (3-3) + (4-3) + (5-3) + (7-3) + (6-3) which is equal to 10 which is greater than M = 8. 
Input: N = 4, M = 2, a[] = {1, 2, 3, 3} 
Output: 2

 

Approach: 
 

  • Sort the array in ascending order
  • Run a binary search with values low=0 and high=length[n-1], such that mid=(low+high)/2.
  • Run a loop from n-1 till 0 adding the height of the rod cut-off to the sum.
  • If the sum is greater than or equal to m, assign low with mid+1 otherwise high will be updated with mid.
  • After Binary search is completed the answer will be low-1. 
     

Below is the implementation of the above approach: 
 

C++




// C++ program to find the maximum possible
// length of rod which will be cut such that
// sum of cut off lengths will be maximum
#include <bits/stdc++.h>
using namespace std;
 
// Function to run Binary Search to
// find maximum cut off length
int binarySearch(int adj[], int target, int length)
{
 
    int low = 0;
    int high = adj[length - 1];
    while (low < high) {
 
        // f is the flag variable
        // sum is for the total length cutoff
        int f = 0, sum = 0;
 
        int mid = low + (high - low) / 2;
 
        // Loop from higher to lower
        // for optimization
        for (int i = length - 1; i >= 0; i--) {
 
            // Only if length is greater
            // than cut-off length
            if (adj[i] > mid) {
                sum = sum + adj[i] - mid;
            }
 
            // When total cut off length becomes greater
            // than desired cut off length
            if (sum >= target) {
                f = 1;
                low = mid + 1;
                break;
            }
        }
 
        // If flag variable is not set
        // Change high
        if (f == 0)
            high = mid;
    }
 
    // returning the maximum cut off length
    return low - 1;
}
 
// Driver Function
int main()
{
    int n1 = 7;
    int n2 = 8;
 
    int adj[] = { 1, 2, 3, 4, 5, 7, 6 };
 
    // Sorting the array in ascending order
    sort(adj, adj + n1);
 
    // Calling the binarySearch Function
    cout << binarySearch(adj, n2, n1);
}


Java




// Java program to find the
// maximum possible length
// of rod which will be cut
// such that sum of cut off
// lengths will be maximum
import java.util.*;
 
class GFG
{
// Function to run Binary
// Search to find maximum
// cut off length
static int binarySearch(int adj[],
                        int target,
                        int length)
{
int low = 0;
int high = adj[length - 1];
while (low < high)
{
 
    // f is the flag variable
    // sum is for the total
    // length cutoff
    int f = 0, sum = 0;
 
    int mid = low + (high - low) / 2;
 
    // Loop from higher to lower
    // for optimization
    for (int i = length - 1;
            i >= 0; i--)
    {
 
        // Only if length is greater
        // than cut-off length
        if (adj[i] > mid)
        {
            sum = sum + adj[i] - mid;
        }
 
        // When total cut off length
        // becomes greater than
        // desired cut off length
        if (sum >= target)
        {
            f = 1;
            low = mid + 1;
            break;
        }
    }
 
    // If flag variable is
    // not set Change high
    if (f == 0)
        high = mid;
}
 
// returning the maximum
// cut off length
return low - 1;
}
 
// Driver Code
public static void main(String args[])
{
    int n1 = 7;
    int n2 = 8;
 
    int adj[] = { 1, 2, 3, 4, 5, 7, 6 };
 
    // Sorting the array
    // in ascending order
    Arrays.sort(adj);
 
    // Calling the binarySearch Function
    System.out.println(binarySearch(adj, n2, n1));
}
}
 
// This code is contributed
// by Arnab Kundu


Python3




# Python 3 program to find the
# maximum possible length of
# rod which will be cut such
# that sum of cut off lengths
# will be maximum
 
# Function to run Binary Search
# to find maximum cut off length
def binarySearch(adj, target, length) :
    low = 0
    high = adj[length - 1]
     
    while (low < high) :
 
        # f is the flag variable
        # sum is for the total
        # length cutoff
 
        # multiple assignments
        f, sum = 0, 0
 
        # take integer value
        mid = low + (high - low) // 2;
 
        # Loop from higher to lower
        # for optimization
        for i in range(length - 1, -1 , -1) :
             
            # Only if length is greater
            # than cut-off length
            if adj[i] > mid :
                sum = sum + adj[i] - mid
                 
            # When total cut off length
            # becomes greater than
            # desired cut off length
            if sum >= target :
                f = 1
                low = mid + 1
                break
 
        # If flag variable is
        # not set. Change high
        if f == 0 :
            high = mid
 
    # returning the maximum
    # cut off length
    return low - 1
 
# Driver code
if __name__ == "__main__" :
 
    n1 = 7
    n2 = 8
 
    # adj = [1,2,3,3]
    adj = [ 1, 2, 3, 4, 5, 7, 6]
 
    # Sorting the array
    # in ascending order
    adj.sort()
 
    # Calling the binarySearch Function
    print(binarySearch(adj, n2, n1))
 
# This code is contributed
# by ANKITRAI1


C#




// C# program to find the
// maximum possible length
// of rod which will be cut
// such that sum of cut off
// lengths will be maximum
using System;
 
class GFG
{
// Function to run Binary
// Search to find maximum
// cut off length
static int binarySearch(int []adj,
                        int target,
                        int length)
{
int low = 0;
int high = adj[length - 1];
while (low < high)
{
 
    // f is the flag variable
    // sum is for the total
    // length cutoff
    int f = 0, sum = 0;
 
    int mid = low + (high - low) / 2;
 
    // Loop from higher to lower
    // for optimization
    for (int i = length - 1;
            i >= 0; i--)
    {
 
        // Only if length is greater
        // than cut-off length
        if (adj[i] > mid)
        {
            sum = sum + adj[i] - mid;
        }
 
        // When total cut off length
        // becomes greater than
        // desired cut off length
        if (sum >= target)
        {
            f = 1;
            low = mid + 1;
            break;
        }
    }
 
    // If flag variable is
    // not set Change high
    if (f == 0)
        high = mid;
}
 
// returning the maximum
// cut off length
return low - 1;
}
 
// Driver Code
public static void Main()
{
    int n1 = 7;
    int n2 = 8;
 
    int []adj = {1, 2, 3, 4, 5, 7, 6};
 
    // Sorting the array
    // in ascending order
    Array.Sort(adj);
 
    // Calling the binarySearch Function
    Console.WriteLine(binarySearch(adj, n2, n1));
}
}
 
// This code is contributed
// by Subhadeep Gupta


PHP




<?php
// PHP program to find the maximum
// possible length of rod which will
// be cut such that sum of cut off
// lengths will be maximum
 
// Function to run Binary Search
// to find maximum cut off length
function binarySearch(&$adj, $target,
                            $length)
{
    $low = 0;
    $high = $adj[$length - 1];
    while ($low < $high)
    {
 
        // f is the flag variable
        // sum is for the total
        // length cutoff
        $f = 0;
        $sum = 0;
 
        $mid = $low + ($high - $low) / 2;
 
        // Loop from higher to lower
        // for optimization
        for ($i = $length - 1; $i >= 0; $i--)
        {
 
            // Only if length is greater
            // than cut-off length
            if ($adj[$i] > $mid)
            {
                $sum = $sum + $adj[$i] - $mid;
            }
 
            // When total cut off length becomes
            // greater than desired cut off length
            if ($sum >= $target)
            {
                $f = 1;
                $low = $mid + 1;
                break;
            }
        }
 
        // If flag variable is not
        // set Change high
        if ($f == 0)
            $high = $mid;
    }
 
    // returning the maximum cut off length
    return $low - 1;
}
 
// Driver Code
$n1 = 7;
$n2 = 8;
 
$adj = array( 1, 2, 3, 4, 5, 7, 6 );
 
// Sorting the array in ascending order
sort($adj);
 
// Calling the binarySearch Function
echo (int)binarySearch($adj, $n2, $n1);
 
// This code is contributed by ChitraNayal
?>


Javascript




<script>
 
// Javascript program to find the
// maximum possible length
// of rod which will be cut
// such that sum of cut off
// lengths will be maximum
 
// Function to run Binary
// Search to find maximum
// cut off length
function binarySearch(adj,target,length)
{
let low = 0;
let high = adj[length - 1];
while (low < high)
{
   
    // f is the flag variable
    // sum is for the total
    // length cutoff
    let f = 0, sum = 0;
   
    let mid = low + Math.floor((high - low) / 2);
   
    // Loop from higher to lower
    // for optimization
    for (let i = length - 1;
            i >= 0; i--)
    {
   
        // Only if length is greater
        // than cut-off length
        if (adj[i] > mid)
        {
            sum = sum + adj[i] - mid;
        }
   
        // When total cut off length
        // becomes greater than
        // desired cut off length
        if (sum >= target)
        {
            f = 1;
            low = mid + 1;
            break;
        }
    }
   
    // If flag variable is
    // not set Change high
    if (f == 0)
        high = mid;
}
   
// returning the maximum
// cut off length
return low - 1;
}
     
// Driver Code   
let n1 = 7;
let n2 = 8;
let adj=[1, 2, 3, 4, 5, 7, 6 ];
 
// Sorting the array
// in ascending order
adj.sort(function(a,b){return a-b;});
 
// Calling the binarySearch Function
document.write(binarySearch(adj, n2, n1));
     
     
// This code is contributed by avanitrachhadiya2155
 
</script>


Output: 

3

 

Time Complexity: O(N * log N) 
Auxiliary Space: O(1)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments