Given an array arr[] consisting of N integers, the task is to sort the array in non-increasing order by minimum number of anti-clockwise rotations. If it is not possible to sort the array, then print “-1”. Otherwise, print the count of rotations.
Examples:
Input: arr[] = {2, 1, 5, 4, 3}
Output: 2
Explanation: Two anti-clockwise rotations are required to sort the array in decreasing order, i.e. {5, 4, 3, 2, 1}Input: arr[] = {2, 3, 1}
Output: -1
Approach: The idea is to traverse the given array arr[] and count the number of indices satisfying arr[i + 1] > arr[i]. Follow the steps below to solve the problem:
- Store the count of arr[i + 1] > arr[i] in a variable and also store the index when arr[i+1] > arr[i].
- If the value of count is N – 1, then the array is sorted in non-decreasing order. The required steps are exactly (N – 1).
- If the value of count is 0, then the array is already sorted in non-increasing order.
- If the value of count is 1 and arr[0] ? arr[N – 1], then the required number of rotations is equal to (index + 1), by performing shifting of all the numbers upto that index. Also, check if arr[0] ? arr[N – 1] to ensure if the sequence is non-increasing.
- Otherwise, it is not possible to sort the array in non-increasing order.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to count minimum anti- // clockwise rotations required to // sort the array in non-increasing order void minMovesToSort( int arr[], int N) { // Stores count of arr[i + 1] > arr[i] int count = 0; // Store last index of arr[i+1] > arr[i] int index; // Traverse the given array for ( int i = 0; i < N - 1; i++) { // If the adjacent elements are // in increasing order if (arr[i] < arr[i + 1]) { // Increment count count++; // Update index index = i; } } // Print the result according // to the following conditions if (count == 0) { cout << "0" ; } else if (count == N - 1) { cout << N - 1; } else if (count == 1 && arr[0] <= arr[N - 1]) { cout << index + 1; } // Otherwise, it is not // possible to sort the array else { cout << "-1" ; } } // Driver Code int main() { // Given array int arr[] = { 2, 1, 5, 4, 2 }; int N = sizeof (arr) / sizeof (arr[0]); // Function Call minMovesToSort(arr, N); return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG{ // Function to count minimum anti- // clockwise rotations required to // sort the array in non-increasing order static void minMovesToSort( int arr[], int N) { // Stores count of arr[i + 1] > arr[i] int count = 0 ; // Store last index of arr[i+1] > arr[i] int index = 0 ; // Traverse the given array for ( int i = 0 ; i < N - 1 ; i++) { // If the adjacent elements are // in increasing order if (arr[i] < arr[i + 1 ]) { // Increment count count++; // Update index index = i; } } // Print the result according // to the following conditions if (count == 0 ) { System.out.print( "0" ); } else if (count == N - 1 ) { System.out.print(N - 1 ); } else if (count == 1 && arr[ 0 ] <= arr[N - 1 ]) { System.out.print(index + 1 ); } // Otherwise, it is not // possible to sort the array else { System.out.print( "-1" ); } } // Driver Code public static void main(String[] args) { // Given array int [] arr = { 2 , 1 , 5 , 4 , 2 }; int N = arr.length; // Function Call minMovesToSort(arr, N); } } // This code is contributed by susmitakundugoaldanga |
Python3
# Python program for the above approach # Function to count minimum anti- # clockwise rotations required to # sort the array in non-increasing order def minMovesToSort(arr, N) : # Stores count of arr[i + 1] > arr[i] count = 0 # Store last index of arr[i+1] > arr[i] index = 0 # Traverse the given array for i in range (N - 1 ): # If the adjacent elements are # in increasing order if (arr[i] < arr[i + 1 ]) : # Increment count count + = 1 # Update index index = i # Print result according # to the following conditions if (count = = 0 ) : print ( "0" ) elif (count = = N - 1 ) : print ( N - 1 ) elif (count = = 1 and arr[ 0 ] < = arr[N - 1 ]) : print (index + 1 ) # Otherwise, it is not # possible to sort the array else : print ( "-1" ) # Driver Code # Given array arr = [ 2 , 1 , 5 , 4 , 2 ] N = len (arr) # Function Call minMovesToSort(arr, N) # This code is contributed by sanjoy_62. |
C#
// C# program for the above approach using System; class GFG{ // Function to count minimum anti- // clockwise rotations required to // sort the array in non-increasing order static void minMovesToSort( int [] arr, int N) { // Stores count of arr[i + 1] > arr[i] int count = 0; // Store last index of arr[i+1] > arr[i] int index = 0; // Traverse the given array for ( int i = 0; i < N - 1; i++) { // If the adjacent elements are // in increasing order if (arr[i] < arr[i + 1]) { // Increment count count++; // Update index index = i; } } // Print the result according // to the following conditions if (count == 0) { Console.Write( "0" ); } else if (count == N - 1) { Console.Write(N - 1); } else if (count == 1 && arr[0] <= arr[N - 1]) { Console.Write(index + 1); } // Otherwise, it is not // possible to sort the array else { Console.Write( "-1" ); } } // Driver Code public static void Main() { // Given array int [] arr = { 2, 1, 5, 4, 2 }; int N = arr.Length; // Function Call minMovesToSort(arr, N); } } // This code is contributed by code_hunt |
Javascript
<script> // JavaScript program for the above approach // Function to count minimum anti- // clockwise rotations required to // sort the array in non-increasing order function minMovesToSort(arr, N) { // Stores count of arr[i + 1] > arr[i] let count = 0; // Store last index of arr[i+1] > arr[i] let index = 0; // Traverse the given array for (let i = 0; i < N - 1; i++) { // If the adjacent elements are // in increasing order if (arr[i] < arr[i + 1]) { // Increment count count++; // Update index index = i; } } // Print result according // to the following conditions if (count == 0) { document.write( "0" ); } else if (count == N - 1) { document.write(N - 1); } else if (count == 1 && arr[0] <= arr[N - 1]) { document.write(index + 1); } // Otherwise, it is not // possible to sort the array else { document.write( "-1" ); } } // Driver Code // Given array let arr = [2, 1, 5, 4, 2]; let N = arr.length; // Function Call minMovesToSort(arr, N); </script> |
2
Time Complexity: O(N)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!