Wednesday, November 20, 2024
Google search engine
HomeData Modelling & AICount paths in a Binary Tree consisting of nodes in non-decreasing order

Count paths in a Binary Tree consisting of nodes in non-decreasing order

Given a Binary Tree consisting of N nodes, the task is to find the number of paths from the root to any node X, such that all the node values in that path are at most X.

Examples:

Input: Below is the given Tree:

Output: 4
Explanation:

The paths from the root to any node X that have value at most values of node X are:

  • Node 3(root node): It always follows the given property.
  • Node 4: The path starting from the root to node with value 4 has order (3 ? 4), with the maximum value of a node being 4.
  • Node 5: The path starting from the root to node with value 5 has order (3 ? 4 ? 5), with the maximum value of a node being 5.
  • Node 3: The path starting from the root to node with value 3 has order (3 ? 1 ? 3), with the maximum value of a node being 3.

Therefore, the count of required paths is 4.

Input: Below is the given Tree:

Output: 3

Approach – using DFS: The idea is to traverse the tree using a Depth First Search traversal while checking if the maximum value from root to any node X is equal to X or not. 
Follow the steps below to solve the problem:

  • Initialize a variable, say count as 0 to store the count of paths from the root to any node X having all the node values in that path is at most X.
  • Traverse the tree recursively using depth-first-search and perform the following steps:
    • Every recursive call for DFS Traversal, apart from the parent node, pass the maximum value of the node obtained so far in that path.
    • Check if the current node value is greater or equal to the maximum value obtained so far, then increment the value of count by 1 and update the maximum value to the current node value.
  • After completing the above steps, print the value of count as the result.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Node structure of the binary tree
struct Node {
    int val;
    Node *left, *right;
};
 
// Function for creating new node
struct Node* newNode(int data)
{
    // Allocate memory for new node
    struct Node* temp = new Node();
 
    // Assigning data value
    temp->val = data;
    temp->left = NULL;
    temp->right = NULL;
 
    // Return the Node
    return temp;
}
 
// Function to perform the DFS Traversal
// to find the number of paths having
// root to node X has value at most X
int countNodes(Node* root, int max)
{
    // If the root node is NULL
    if (!root)
        return 0;
 
    // Check if the current value is
    // greater than the maximum value
    // in path from root to current node
    if (root->val >= max)
        return 1 + countNodes(root->left,
                              root->val)
               + countNodes(root->right, root->val);
 
    // Otherwise
    return countNodes(root->left,
                      max)
           + countNodes(root->right,
                        max);
}
 
// Driver Code
int main()
{
    // Given Binary Tree
    Node* root = NULL;
    root = newNode(3);
    root->left = newNode(1);
    root->right = newNode(4);
    root->left->left = newNode(3);
    root->right->left = newNode(1);
    root->right->right = newNode(5);
 
    cout << countNodes(root, INT_MIN);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
// Class containing left and
// right child of current
// node and key value
class Node {
  
    int data;
    Node left, right;
  
    public Node(int item)
    {
        data = item;
        left = right = null;
    }
}
  
 
class GFG {
     
    // Root of the Binary Tree
    Node root;
  
    public GFG()
    {
        root = null;
    }
     
    // Function to perform the DFS Traversal
// to find the number of paths having
// root to node X has value at most X
static int countNodes(Node root, int max)
{
   
    // If the root node is NULL
    if (root == null)
        return 0;
 
    // Check if the current value is
    // greater than the maximum value
    // in path from root to current node
    if (root.data >= max)
        return 1 + countNodes(root.left,
                              root.data)
               + countNodes(root.right, root.data);
 
    // Otherwise
    return countNodes(root.left,
                      max)
           + countNodes(root.right,
                        max);
}
 
  // Driver code
public static void main (String[] args)
{
   
      GFG tree = new GFG();
        tree.root = new Node(3);
        tree.root.left = new Node(1);
        tree.root.right = new Node(4);
        tree.root.left.left = new Node(3);
        tree.root.right.left = new Node(1);
        tree.root.right.right = new Node(5);
      System.out.println(countNodes(tree.root, Integer.MIN_VALUE));
    }
}
 
// This code is contributed by offbeat


Python3




# Python3 program for the above approach
 
# Node structure of the binary tree
class Node:
    def __init__(self, x):
        self.val = x
        self.left = None
        self.right = None
 
# Function to perform the DFS Traversal
# to find the number of paths having
# root to node X has value at most X
def countNodes(root, max):
    # If the root node is NULL
    if (not root):
        return 0
 
    # Check if the current value is
    # greater than the maximum value
    #in path from root to current node
    if (root.val >= max):
        return 1 + countNodes(root.left,root.val) + countNodes(root.right, root.val)
 
    # Otherwise
    return countNodes(root.left, max) + countNodes(root.right, max)
 
# Driver Code
if __name__ == '__main__':
   
    # Given Binary Tree
    root = Node(3)
    root.left = Node(1)
    root.right = Node(4)
    root.left.left = Node(3)
    root.right.left = Node(1)
    root.right.right = Node(5)
 
    print(countNodes(root, -10**19))
 
# This code is contributed by mohit kumar 29.


C#




// C# program to count frequencies of array items
using System;
 
// Class containing left and
// right child of current
// node and key value
class Node {
  
    public int data;
    public Node left, right;
  
    public Node(int item)
    {
        data = item;
        left = right = null;
    }
}
  
public class GFG
{
     
    // Root of the Binary Tree
    Node root;
    public GFG()
    {
        root = null;
    }
     
// Function to perform the DFS Traversal
// to find the number of paths having
// root to node X has value at most X
static int countNodes(Node root, int max)
{
   
    // If the root node is NULL
    if (root == null)
        return 0;
 
    // Check if the current value is
    // greater than the maximum value
    // in path from root to current node
    if (root.data >= max)
        return 1 + countNodes(root.left,
                              root.data)
               + countNodes(root.right, root.data);
 
    // Otherwise
    return countNodes(root.left,
                      max)
           + countNodes(root.right,
                        max);
}
 
// Driver code
public static void Main(String []args)
{
        GFG tree = new GFG();
        tree.root = new Node(3);
        tree.root.left = new Node(1);
        tree.root.right = new Node(4);
        tree.root.left.left = new Node(3);
        tree.root.right.left = new Node(1);
        tree.root.right.right = new Node(5);
        Console.WriteLine(countNodes(tree.root, Int32.MinValue));
    }
}
 
// This code is contributed by jana_sayantan.


Javascript




<script>
    // Javascript program for the above approach
     
    // Class containing left and
    // right child of current
    // node and key value
    class Node
    {
        constructor(item) {
           this.left = null;
           this.right = null;
           this.data = item;
        }
    }
     
    // Root of the Binary Tree
    let root;
     
    class GFG
    {
        constructor() {
           root = null;
        }
    }
     
    // Function to perform the DFS Traversal
    // to find the number of paths having
    // root to node X has value at most X
    function countNodes(root, max)
    {
 
        // If the root node is NULL
        if (root == null)
            return 0;
 
        // Check if the current value is
        // greater than the maximum value
        // in path from root to current node
        if (root.data >= max)
            return 1 + countNodes(root.left, root.data)
                   + countNodes(root.right, root.data);
 
        // Otherwise
        return countNodes(root.left, max)
               + countNodes(root.right, max);
    }
     
    let tree = new GFG();
    tree.root = new Node(3);
    tree.root.left = new Node(1);
    tree.root.right = new Node(4);
    tree.root.left.left = new Node(3);
    tree.root.right.left = new Node(1);
    tree.root.right.right = new Node(5);
      document.write(countNodes(tree.root, Number.MIN_VALUE));
 
// This code is contributed by sureh07.
</script>


Output: 

4

 

Time Complexity: O(N)
Auxiliary Space: O(N)

Approach using BFS: The idea is to traverse the tree using breadth-first search while checking if the maximum value from root to X is equal to X. Follow the steps below to solve the problem:

  • Initialize a variable, say count as 0 to store the count of paths from the root to any node X having all the node values in that path is at most X and a queue Q of pairs to perform the BFS Traversal.
  • Push the root node with INT_MIN as the maximum value in the queue.
  • Now, until Q is non-empty perform the following:
    • Pop the front node from the queue.
    • If the front node value is at least the current maximum value obtained so far, then increment the value of count by 1.
    • Update the maximum value that occurred so far with the current node value.
    • If the left and right nodes exist for the current popped node then push it into the queue Q with the updated maximum value in the above step.
  • After completing the above steps, print the value of count as the result.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Node of the binary tree
struct Node {
    int val;
    Node *left, *right;
};
 
// Function for creating new node
struct Node* newNode(int data)
{
    // Allocate memory for new node
    struct Node* temp = new Node();
    temp->val = data;
    temp->left = NULL;
    temp->right = NULL;
 
    // Return the created node
    return temp;
}
 
// Function to perform the DFS Traversal
// to find the number of paths having
// root to node X has value at most X
int countNodes(Node* root)
{
    // Initialize queue
    queue<pair<Node*, int> > q;
    int m = INT_MIN;
 
    // Push root in queue with the
    // maximum value m
    q.push({ root, m });
 
    // Stores the count of good nodes
    int count = 0;
 
    // Traverse all nodes
    while (!q.empty()) {
 
        // Store the front node of
        // the queue
        auto temp = q.front();
        q.pop();
        Node* node = temp.first;
        int num = temp.second;
 
        // Check is current node is
        // greater than the maximum
        // value in path from root to
        // the current node
        if (node->val >= num)
            count++;
 
        // Update the maximum value m
        m = max(node->val, num);
 
        // If left child is not null,
        // push it to queue with the
        // maximum value m
        if (node->left)
            q.push({ node->left, m });
 
        // If right child is not null,
        // push it to queue with the
        // maximum value m
        if (node->right)
            q.push({ node->right, m });
    }
 
    // Returns the answer
    return count;
}
 
// Driver Code
int main()
{
    // Construct a Binary Tree
    Node* root = NULL;
    root = newNode(3);
    root->left = newNode(1);
    root->right = newNode(4);
    root->left->left = newNode(3);
    root->right->left = newNode(1);
    root->right->right = newNode(5);
 
    cout << countNodes(root);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
// Node of the binary tree
class Node {
   
    int val;
    Node left, right;
   
    public Node(int data)
    {
        val = data;
        left = right = null;
    }
}
 
// User defined Pair class
class Pair {
    Node x;
    int y;
   
    // Constructor
    public Pair(Node x, int y)
    {
        this.x = x;
        this.y = y;
    }
}
     
public class Main
{
    // Function for creating new node
    static Node newNode(int data)
    {
        // Allocate memory for new node
        Node temp = new Node(data);
       
        // Return the created node
        return temp;
    }
       
    // Function to perform the DFS Traversal
    // to find the number of paths having
    // root to node X has value at most X
    static int countNodes(Node root)
    {
        // Initialize queue
        Vector<Pair> q = new Vector<Pair>();
        int m = Integer.MIN_VALUE;
       
        // Push root in queue with the
        // maximum value m
        q.add(new Pair(root, m));
       
        // Stores the count of good nodes
        int count = 0;
       
        // Traverse all nodes
        while (q.size() > 0) {
       
            // Store the front node of
            // the queue
            Pair temp = q.get(0);
            q.remove(0);
            Node node = temp.x;
            int num = temp.y;
       
            // Check is current node is
            // greater than the maximum
            // value in path from root to
            // the current node
            if (node.val >= num)
                count++;
       
            // Update the maximum value m
            m = Math.max(node.val, num);
       
            // If left child is not null,
            // push it to queue with the
            // maximum value m
            if (node.left != null)
                q.add(new Pair(node.left, m));
       
            // If right child is not null,
            // push it to queue with the
            // maximum value m
            if (node.right != null)
                q.add(new Pair(node.right, m));
        }
       
        // Returns the answer
        return count;
    }
 
    public static void main(String[] args) {
        // Construct a Binary Tree
        Node root = null;
        root = newNode(3);
        root.left = newNode(1);
        root.right = newNode(4);
        root.left.left = newNode(3);
        root.right.left = newNode(1);
        root.right.right = newNode(5);
       
        System.out.println(countNodes(root));
    }
}
 
// This code is contributed by mukesh07.


Python3




# Python3 program for the above approach
import sys
 
# Node of the binary tree
class Node:
    def __init__(self, data):
        self.val = data
        self.left = None
        self.right = None
 
# Function for creating new node
def newNode(data):
    # Allocate memory for new node
    temp = Node(data)
 
    # Return the created node
    return temp
 
# Function to perform the DFS Traversal
# to find the number of paths having
# root to node X has value at most X
def countNodes(root):
    # Initialize queue
    q = []
    m = -sys.maxsize
 
    # Push root in queue with the
    # maximum value m
    q.append([ root, m ])
 
    # Stores the count of good nodes
    count = 0
 
    # Traverse all nodes
    while (len(q) > 0):
        # Store the front node of
        # the queue
        temp = q[0]
        q.pop(0)
        node = temp[0]
        num = temp[1]
 
        # Check is current node is
        # greater than the maximum
        # value in path from root to
        # the current node
        if (node.val >= num):
            count+=1
 
        # Update the maximum value m
        m = max(node.val, num)
 
        # If left child is not null,
        # push it to queue with the
        # maximum value m
        if (node.left != None):
            q.append([ node.left, m ])
 
        # If right child is not null,
        # push it to queue with the
        # maximum value m
        if (node.right != None):
            q.append([ node.right, m ])
 
    # Returns the answer
    return count
 
# Construct a Binary Tree
root = None
root = newNode(3)
root.left = newNode(1)
root.right = newNode(4)
root.left.left = newNode(3)
root.right.left = newNode(1)
root.right.right = newNode(5)
 
print(countNodes(root))
 
# This code is contributed by rameshtravel07.


C#




// C# program for the above approach
using System;
using System.Collections;
class GFG {
     
    // Node of the binary tree
    class Node {
        
        public int val;
        public Node left, right;
        
        public Node(int data)
        {
            val = data;
            left = right = null;
        }
    }
     
    // Function for creating new node
    static Node newNode(int data)
    {
        // Allocate memory for new node
        Node temp = new Node(data);
      
        // Return the created node
        return temp;
    }
      
    // Function to perform the DFS Traversal
    // to find the number of paths having
    // root to node X has value at most X
    static int countNodes(Node root)
    {
        // Initialize queue
        Queue q = new Queue();
        int m = Int32.MinValue;
      
        // Push root in queue with the
        // maximum value m
        q.Enqueue(new Tuple<Node, int>(root, m));
      
        // Stores the count of good nodes
        int count = 0;
      
        // Traverse all nodes
        while (q.Count > 0) {
      
            // Store the front node of
            // the queue
            Tuple<Node, int> temp = (Tuple<Node, int>)q.Peek();
            q.Dequeue();
            Node node = temp.Item1;
            int num = temp.Item2;
      
            // Check is current node is
            // greater than the maximum
            // value in path from root to
            // the current node
            if (node.val >= num)
                count++;
      
            // Update the maximum value m
            m = Math.Max(node.val, num);
      
            // If left child is not null,
            // push it to queue with the
            // maximum value m
            if (node.left != null)
                q.Enqueue(new Tuple<Node, int>(node.left, m));
      
            // If right child is not null,
            // push it to queue with the
            // maximum value m
            if (node.right != null)
                q.Enqueue(new Tuple<Node, int>(node.right, m));
        }
      
        // Returns the answer
        return count;
    }
     
  // Driver code
  static void Main()
  {
     
    // Construct a Binary Tree
    Node root = null;
    root = newNode(3);
    root.left = newNode(1);
    root.right = newNode(4);
    root.left.left = newNode(3);
    root.right.left = newNode(1);
    root.right.right = newNode(5);
  
    Console.Write(countNodes(root));
  }
}
 
// This code is contributed by decode2207.


Javascript




<script>
 
    // JavaScript program for the above approach
     
    class Node
    {
        constructor(data) {
           this.left = null;
           this.right = null;
           this.val = data;
        }
    }
     
    // Function for creating new node
    function newNode(data)
    {
        // Allocate memory for new node
        let temp = new Node(data);
 
        // Return the created node
        return temp;
    }
 
    // Function to perform the DFS Traversal
    // to find the number of paths having
    // root to node X has value at most X
    function countNodes(root)
    {
        // Initialize queue
        let q = [];
        let m = Number.MIN_VALUE;
 
        // Push root in queue with the
        // maximum value m
        q.push([ root, m ]);
 
        // Stores the count of good nodes
        let count = 0;
 
        // Traverse all nodes
        while (q.length > 0) {
 
            // Store the front node of
            // the queue
            let temp = q[0];
            q.shift();
            let node = temp[0];
            let num = temp[1];
 
            // Check is current node is
            // greater than the maximum
            // value in path from root to
            // the current node
            if (node.val >= num)
                count++;
 
            // Update the maximum value m
            m = Math.max(node.val, num);
 
            // If left child is not null,
            // push it to queue with the
            // maximum value m
            if (node.left)
                q.push([ node.left, m ]);
 
            // If right child is not null,
            // push it to queue with the
            // maximum value m
            if (node.right)
                q.push([ node.right, m ]);
        }
 
        // Returns the answer
        return count;
    }
     
    // Construct a Binary Tree
    let root = null;
    root = newNode(3);
    root.left = newNode(1);
    root.right = newNode(4);
    root.left.left = newNode(3);
    root.right.left = newNode(1);
    root.right.right = newNode(5);
  
    document.write(countNodes(root));
     
</script>


Output: 

4

 

Time Complexity: O(N)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments