Given a string str and an array arr[] of K characters, the task is to find the number of substrings of str that contain characters only from the given character array arr[].
Note: The string str and the arr[] contain only lowercase alphabets.
Examples:
Input: S = “abcb”, K = 2, charArray[] = {‘a’, ‘b’}
Output: 4
Explanation:
The substrings are “a”, “ab”, “b”, “b” using the available charactersInput: S = “aabdbbtr”, K = 4, charArray[] = {‘e’, ‘a’, ‘r’, ‘t’}
Output: 6
Explanation:
The substrings “a”, “aa”, “a”, “t”, “tr”, “r” using the available characters.
Naive Approach: The naive approach is generate all possible substrings for the given string str and check if each substring consists of given characters in the array arr[] or not. If Yes then count that substring else check for the next substring.
Time Complexity: O(N2)
Auxiliary Space: O(N)
Efficient Approach: The above naive approach can be optimized as we will delete the count of substrings formed by characters which are not present in the given array arr[]. Below are the steps:
- Store the characters present in the array arr[] in a boolean array of size 26, so that the searching of any character can be done in O(1) time.
- The total number of substrings formed by string of length N is (N*(N+1))/2, initialise count as (N*(N+1))/2.
- Traverse the string from left to right and store the index of the last character that we encountered in the string which is not present in the array arr[] using a variable lastPos
- If while traversing the string we encounter any character that is not present in arr[] then we subtract number of substrings that will contain this character and will have a starting point greater than the value of lastPos. Suppose we are at index i then the number of substrings to be subtracted will be given by
(i - lastPos)*(N - i)
- Update the value of lastPos everytime we encounter a character not available in charArray[].
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the number of // substrings that can be formed // using given characters void numberofsubstrings(string str, int k, char charArray[]) { int N = str.length(); // Boolean array for storing // the available characters bool available[26] = { 0 }; // Mark indices of all // available characters as 1 for ( int i = 0; i < k; i++) { available[charArray[i] - 'a' ] = 1; } // Initialize lastPos as -1 int lastPos = -1; // Initialize ans with the total // no of possible substrings int ans = (N * (N + 1)) / 2; // Traverse the string from // left to right for ( int i = 0; i < N; i++) { // If the current character // is not present in B if (available[str[i] - 'a' ] == 0) { // Subtract the total possible // substrings ans -= ((i - lastPos) * (N - i)); // Update the value of // lastpos to current index lastPos = i; } } // Print the final answer cout << ans << endl; } // Driver Code int main() { // Given String string str = "abcb" ; int k = 2; // Given character array char charArray[k] = { 'a' , 'b' }; // Function Call numberofsubstrings(str, k, charArray); return 0; } |
Java
// Java program for the above approach import java.util.Arrays; class GFG{ // Function to find the number of // substrings that can be formed // using given characters public static void numberofsubstrings(String str, int k, char charArray[]) { int N = str.length(); // Boolean array for storing // the available characters int available[] = new int [ 26 ]; Arrays.fill(available, 0 ); // Mark indices of all // available characters as 1 for ( int i = 0 ; i < k; i++) { available[charArray[i] - 'a' ] = 1 ; } // Initialize lastPos as -1 int lastPos = - 1 ; // Initialize ans with the total // no of possible substrings int ans = (N * (N + 1 )) / 2 ; // Traverse the string from // left to right for ( int i = 0 ; i < N; i++) { // If the current character // is not present in B if (available[str.charAt(i) - 'a' ] == 0 ) { // Subtract the total possible // substrings ans -= ((i - lastPos) * (N - i)); // Update the value of // lastpos to current index lastPos = i; } } // Print the final answer System.out.println(ans); } // Driver Code public static void main(String args[]) { // Given String String str = "abcb" ; int k = 2 ; // Given character array char []charArray = { 'a' , 'b' }; // Function Call numberofsubstrings(str, k, charArray); } } // This code is contributed by SoumikMondal |
Python3
# Python3 program for the above approach # Function to find the number of # substrings that can be formed # using given characters def numberofsubstrings( str , k, charArray): N = len ( str ) # Boolean array for storing # the available characters available = [ 0 ] * 26 # Mark indices of all # available characters as 1 for i in range ( 0 , k): available[ ord (charArray[i]) - ord ( 'a' )] = 1 # Initialize lastPos as -1 lastPos = - 1 # Initialize ans with the total # no of possible substrings ans = (N * (N + 1 )) / 2 # Traverse the string from # left to right for i in range ( 0 , N): # If the current character # is not present in B if (available[ ord ( str [i]) - ord ( 'a' )] = = 0 ): # Subtract the total possible # substrings ans - = ((i - lastPos) * (N - i)) # Update the value of # lastpos to current index lastPos = i # Print the final answer print ( int (ans)) # Driver Code # Given String str = "abcb" k = 2 # Given character array charArray = [ 'a' , 'b' ] # Function call numberofsubstrings( str , k, charArray) # This code is contributed by sanjoy_62 |
C#
// C# program for the above approach using System; class GFG{ // Function to find the number of // substrings that can be formed // using given characters public static void numberofsubstrings(String str, int k, char []charArray) { int N = str.Length; // Boolean array for storing // the available characters int []available = new int [26]; // Mark indices of all // available characters as 1 for ( int i = 0; i < k; i++) { available[charArray[i] - 'a' ] = 1; } // Initialize lastPos as -1 int lastPos = -1; // Initialize ans with the total // no of possible substrings int ans = (N * (N + 1)) / 2; // Traverse the string from // left to right for ( int i = 0; i < N; i++) { // If the current character // is not present in B if (available[str[i] - 'a' ] == 0) { // Subtract the total possible // substrings ans -= ((i - lastPos) * (N - i)); // Update the value of // lastpos to current index lastPos = i; } } // Print the final answer Console.WriteLine(ans); } // Driver Code public static void Main(String []args) { // Given String String str = "abcb" ; int k = 2; // Given character array char []charArray = { 'a' , 'b' }; // Function Call numberofsubstrings(str, k, charArray); } } // This code is contributed by Princi Singh |
Javascript
<script> // JavaScript program for the above approach // Function to find the number of // substrings that can be formed // using given characters function numberofsubstrings(str, k, charArray) { var N = str.length; // Boolean array for storing // the available characters var available = [ 26 ]; // Mark indices of all // available characters as 1 for ( var i = 0; i < k; i++) { available[charArray[i] - 'a' ] = 1; } // Initialize lastPos as -1 var lastPos = -1; // Initialize ans with the total // no of possible substrings var ans = (N * (N + 1)) / 2; // Traverse the string from // left to right for ( var i = 0; i < N; i++) { // If the current character // is not present in B if (available[str.charAt(i) - 'a' ] == 0) { // Subtract the total possible // substrings ans -= ((i - lastPos) * (N - i)); // Update the value of // lastpos to current index lastPos = i; } } // Print the final answer document.write(ans); } // Driver Code // Given String var str = "abcb" ; var k = 2; // Given character array var charArray = [ 'a' , 'b' ]; // Function Call numberofsubstrings(str, k, charArray); // This code is contributed by shivanisinghss2110. </script> |
4
Time Complexity: O(N), N is the length of the string
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!