Given a number N denotes the total number of elements in a matrix, the task is to print all possible order of matrix. An order is a pair (m, n) of integers where m is number of rows and n is number of columns. For example, if the number of elements is 8 then all possible orders are:
(1, 8), (2, 4), (4, 2), (8, 1).
Examples:
Input: N = 8
Output: (1, 2) (2, 4) (4, 2) (8, 1)
Input: N = 100
Output:
(1, 100) (2, 50) (4, 25) (5, 20) (10, 10) (20, 5) (25, 4) (50, 2) (100, 1)
Approach:
A matrix is said to be of order m x n if it has m rows and n columns. The total number of elements in a matrix is equal to (m*n). So we start from 1 and check one by one if it divides N(the total number of elements). If it divides, it will be one possible order.
Below is the implementation of the above approach:
C++
// C++ implementation of the above approach #include <iostream> using namespace std; // Function to print all possible order void printAllOrder( int n) { // total number of elements in a matrix // of order m * n is equal (m*n) // where m is number of rows and n is // number of columns for ( int i = 1; i <= n; i++) { // if n is divisible by i then i // and n/i will be the one // possible order of the matrix if (n % i == 0) { // print the given format cout << i << " " << n / i << endl; } } } // Driver code int main() { int n = 10; printAllOrder(n); return 0; } |
Java
// Java implementation of the above approach class GFG { // Function to print all possible order static void printAllOrder( int n) { // total number of elements in a matrix // of order m * n is equal (m*n) // where m is number of rows and n is // number of columns for ( int i = 1 ; i <= n; i++) { // if n is divisible by i then i // and n/i will be the one // possible order of the matrix if (n % i == 0 ) { // print the given format System.out.println( i + " " + n / i ); } } } // Driver code public static void main(String []args) { int n = 10 ; printAllOrder(n); } } // This code is contributed by ihritik |
Python
# Python implementation of the above approach # Function to print all possible order def printAllOrder(n): # total number of elements in a matrix # of order m * n is equal (m*n) # where m is number of rows and n is # number of columns for i in range ( 1 ,n + 1 ): # if n is divisible by i then i # and n/i will be the one # possible order of the matrix if (n % i = = 0 ) : # print the given format print ( i ,n / / i ) # Driver code n = 10 printAllOrder(n) # This code is contributed by ihritik |
C#
// C# implementation of the above approach using System; class GFG { // Function to print all possible order static void printAllOrder( int n) { // total number of elements in a matrix // of order m * n is equal (m*n) // where m is number of rows and n is // number of columns for ( int i = 1; i <= n; i++) { // if n is divisible by i then i // and n/i will be the one // possible order of the matrix if (n % i == 0) { // print the given format Console.WriteLine( i + " " + n / i ); } } } // Driver code public static void Main() { int n = 10; printAllOrder(n); } } // This code is contributed by ihritik |
PHP
<?php // PHP implementation of the above approach // Function to print all possible order function printAllOrder( $n ) { // total number of elements in a matrix // of order m * n is equal (m*n) // where m is number of rows and n is // number of columns for ( $i = 1; $i <= $n ; $i ++) { // if n is divisible by i then i // and n/i will be the one // possible order of the matrix if ( $n % $i == 0) { // print the given format echo $i , " " , ( $n / $i ), "\n" ; } } } // Driver code $n = 10; printAllOrder( $n ); // This code is contributed by Ryuga ?> |
Javascript
<script> // Java Script implementation of the above approach // Function to print all possible order function printAllOrder( n) { // total number of elements in a matrix // of order m * n is equal (m*n) // where m is number of rows and n is // number of columns for (let i = 1; i <= n; i++) { // if n is divisible by i then i // and n/i will be the one // possible order of the matrix if (n % i == 0) { // print the given format document.write( i + " " + n / i+ "<br>" ); } } } // Driver code let n = 10; printAllOrder(n); // This code is contributed by sravan </script> |
1 10 2 5 5 2 10 1
Time Complexity: O(n)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!