Given a matrix of size n*n. Count the frequency of given element k in that matrix. Here base index is 1.
Examples:
Input : n = 4, k = 7 Output : 2 Explanation The matrix will be 2 3 4 5 3 4 5 6 4 5 6 7 5 6 7 8 in the given matrix where M(i, j) = i+j, frequency of 7 is 2 Input : n = 5, k = 4 Output : 3 Explanation The matrix will be 2 3 4 5 6 3 4 5 6 7 4 5 6 7 8 5 6 7 8 9 6 7 8 9 10 Explanation In the given matrix where M(i, j) = i+j, frequency of 4 is 3
First method
- Construct a matrix of size n*n.
- Fill the value with M(i, j)=i+j.(recall that here base index is 1)
- Iteratively traverse the matrix and count the frequency of a given element.
This method is not that much efficient because if the matrix size is very large it’s will result in a Time limit exceeded. Time complexity will be O(n^2).
Efficient method
In this method, we avoid creating a matrix of size n*n.
for example
if n = 10 the matrix will be
2 3 4 5 6 7 8 9 10 11 3 4 5 6 7 8 9 10 11 12 4 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 14 6 7 8 9 10 11 12 13 14 15 7 8 9 10 11 12 13 14 15 16 8 9 10 11 12 13 14 15 16 17 9 10 11 12 13 14 15 16 17 18 10 11 12 13 14 15 16 17 18 19 11 12 13 14 15 16 17 18 19 20
Now, notice how the values are the same in the secondary Diagonal, and we can also find a pattern in the count it increases like 1, 2, 3, 4,
Here we can see that
If (n+1)>=k then the frequency of k is k-1
Else frequency will be 2*n+1-k
Implementation:
CPP
// CPP program to find the frequency of k // in matrix where m(i, j)=i+j #include <bits/stdc++.h> using namespace std; int find( int n, int k) { if (n + 1 >= k) return (k - 1); else return (2 * n + 1 - k); } // Driver Code int main() { int n = 4, k = 7; int freq = find(n, k); if (freq < 0) cout << " element not exist \n " ; else cout << " Frequency of " << k << " is " << freq << "\n" ; return 0; } |
Java
// Java program to find the // frequency of k in matrix // in matrix where m(i, j)=i+j import java.util.*; import java.lang.*; public class GfG{ public static int find( int n, int k) { if (n + 1 >= k) return (k - 1 ); else return ( 2 * n + 1 - k); } // Driver function public static void main(String argc[]) { int n = 4 , k = 7 ; int freq = find(n, k); if (freq < 0 ) System.out.print( " element" + " not exist \n " ); else System.out.print( " Frequency" + " of " + k + " is " + freq + "\n" ); } } // This code is contributed by Sagar Shukla |
Python3
# Python program to find # the frequency of k # in matrix where # m(i, j)=i+j import math def find( n, k): if (n + 1 > = k): return (k - 1 ) else : return ( 2 * n + 1 - k) # Driver Code n = 4 k = 7 freq = find(n, k) if (freq < 0 ): print ( " element not exist" ) else : print ( " Frequency of " , k , " is " , freq ) # This code is contributed # by Gitanjali. |
C#
// C# program to find the // frequency of k in matrix // in matrix where m(i, j)=i+j using System; public class GfG{ public static int find( int n, int k) { if (n + 1 >= k) return (k - 1); else return (2 * n + 1 - k); } // Driver function public static void Main() { int n = 4, k = 7; int freq = find(n, k); if (freq < 0) Console.WriteLine( " element" + " not exist " ); else Console.WriteLine( " Frequency" + " of " + k + " is " + freq ); } } // This code is contributed by vt_m |
PHP
<?php // PHP program to find the frequency of k // in matrix where m(i, j)=i+j function find( $n , $k ) { if ( $n + 1 >= $k ) return ( $k - 1); else return (2 * $n + 1 - $k ); } // Driver Code $n = 4; $k = 7; $freq = find( $n , $k ); if ( $freq < 0) echo " element not exist \n " ; else echo " Frequency of " , $k , " is " , $freq , "\n" ; // This code is contributed by anuj_67. ?> |
Javascript
<script> // Javascript program to find the frequency of k // in matrix where m(i, j)=i+j function find(n, k) { if (n + 1 >= k) return (k - 1); else return (2 * n + 1 - k); } // Driver Code var n = 4, k = 7; var freq = find(n, k); if (freq < 0) document.write( " element not exist <br>" ); else document.write( " Frequency of " + k + " is " + freq + "<br>" ); </script> |
Frequency of 7 is 2
Time Complexity: O(1)
Auxiliary Space: O(1)
This article is contributed by Aarti Rathi. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!