Monday, November 18, 2024
Google search engine
HomeData Modelling & AICount and Toggle Queries on a Binary Array

Count and Toggle Queries on a Binary Array

Given a size n in which initially all elements are 0. The task is to perform multiple queries of following two types. The queries can appear in any order. 
 

1. toggle(start, end) : Toggle (0 into 1 or 1 into 0) the values from range ‘start’ to ‘end’.

2. count(start, end) : Count the number of 1’s within given range from ‘start’ to ‘end’.

Input : n = 5       // we have n = 5 blocks
        toggle 1 2  // change 1 into 0 or 0 into 1
        Toggle 2 4
        Count  2 3  // count all 1's within the range
        Toggle 2 4
        Count  1 4  // count all 1's within the range
Output : Total number of 1's in range 2 to 3 is = 1
         Total number of 1's in range 1 to 4 is = 2

 

A simple solutionfor this problem is to traverse the complete range for “Toggle” query and when you get “Count” query then count all the 1’s for given range. But the time complexity for this approach will be O(q*n) where q=total number of queries.
An efficient solution for this problem is to use Segment Tree with Lazy Propagation. Here we collect the updates until we get a query for “Count”. When we get the query for “Count”, we make all the previously collected Toggle updates in array and then count number of 1’s with in the given range. 
Below is the implementation of above approach:
 

C++




// C++ program to implement toggle and count
// queries on a binary array.
#include<bits/stdc++.h>
using namespace std;
const int MAX = 100000;
 
// segment tree to store count of 1's within range
int tree[MAX] = {0};
 
// bool type tree to collect the updates for toggling
// the values of 1 and 0 in given range
bool lazy[MAX] = {false};
 
// function for collecting updates of toggling
// node --> index of current node in segment tree
// st --> starting index of current node
// en --> ending index of current node
// us --> starting index of range update query
// ue --> ending index of range update query
void toggle(int node, int st, int en, int us, int ue)
{
    // If lazy value is non-zero for current node of segment
    // tree, then there are some pending updates. So we need
    // to make sure that the pending updates are done before
    // making new updates. Because this value may be used by
    // parent after recursive calls (See last line of this
    // function)
    if (lazy[node])
    {
        // Make pending updates using value stored in lazy nodes
        lazy[node] = false;
        tree[node] = en - st + 1 - tree[node];
 
        // checking if it is not leaf node because if
        // it is leaf node then we cannot go further
        if (st < en)
        {
            // We can postpone updating children we don't
            // need their new values now.
            // Since we are not yet updating children of 'node',
            // we need to set lazy flags for the children
            lazy[node<<1] = !lazy[node<<1];
            lazy[1+(node<<1)] = !lazy[1+(node<<1)];
        }
    }
 
    // out of range
    if (st>en || us > en || ue < st)
        return ;
 
    // Current segment is fully in range
    if (us<=st && en<=ue)
    {
        // Add the difference to current node
        tree[node] = en-st+1 - tree[node];
 
        // same logic for checking leaf node or not
        if (st < en)
        {
            // This is where we store values in lazy nodes,
            // rather than updating the segment tree itself
            // Since we don't need these updated values now
            // we postpone updates by storing values in lazy[]
            lazy[node<<1] = !lazy[node<<1];
            lazy[1+(node<<1)] = !lazy[1+(node<<1)];
        }
        return;
    }
 
    // If not completely in range, but overlaps, recur for
    // children,
    int mid = (st+en)/2;
    toggle((node<<1), st, mid, us, ue);
    toggle((node<<1)+1, mid+1,en, us, ue);
 
    // And use the result of children calls to update this node
    if (st < en)
        tree[node] = tree[node<<1] + tree[(node<<1)+1];
}
 
/* node --> Index of current node in the segment tree.
          Initially 0 is passed as root is always at'
          index 0
   st & en  --> Starting and ending indexes of the
                segment represented by current node,
                i.e., tree[node]
   qs & qe  --> Starting and ending indexes of query
                range */
// function to count number of 1's within given range
int countQuery(int node, int st, int en, int qs, int qe)
{
    // current node is out of range
    if (st>en || qs > en || qe < st)
        return 0;
 
    // If lazy flag is set for current node of segment tree,
    // then there are some pending updates. So we need to
    // make sure that the pending updates are done before
    // processing the sub sum query
    if (lazy[node])
    {
        // Make pending updates to this node. Note that this
        // node represents sum of elements in arr[st..en] and
        // all these elements must be increased by lazy[node]
        lazy[node] = false;
        tree[node] = en-st+1-tree[node];
 
        // checking if it is not leaf node because if
        // it is leaf node then we cannot go further
        if (st<en)
        {
            // Since we are not yet updating children os si,
            // we need to set lazy values for the children
            lazy[node<<1] = !lazy[node<<1];
            lazy[(node<<1)+1] = !lazy[(node<<1)+1];
        }
    }
 
    // At this point we are sure that pending lazy updates
    // are done for current node. So we can return value
    // If this segment lies in range
    if (qs<=st && en<=qe)
        return tree[node];
 
    // If a part of this segment overlaps with the given range
    int mid = (st+en)/2;
    return countQuery((node<<1), st, mid, qs, qe) +
           countQuery((node<<1)+1, mid+1, en, qs, qe);
}
 
// Driver program to run the case
int main()
{
    int n = 5;
    toggle(1, 0, n-1, 1, 2);  //  Toggle 1 2
    toggle(1, 0, n-1, 2, 4);  //  Toggle 2 4
 
    cout << countQuery(1, 0, n-1, 2, 3) << endl;  //  Count 2 3
 
    toggle(1, 0, n-1, 2, 4);  //  Toggle 2 4
 
    cout << countQuery(1, 0, n-1, 1, 4) << endl;  //  Count 1 4
 
   return 0;
}


Java




// Java program to implement toggle and
// count queries on a binary array.
 
class GFG
{
static final int MAX = 100000;
 
// segment tree to store count
// of 1's within range
static int tree[] = new int[MAX];
 
// bool type tree to collect the updates
// for toggling the values of 1 and 0 in
// given range
static boolean lazy[] = new boolean[MAX];
 
// function for collecting updates of toggling
// node --> index of current node in segment tree
// st --> starting index of current node
// en --> ending index of current node
// us --> starting index of range update query
// ue --> ending index of range update query
static void toggle(int node, int st,
                   int en, int us, int ue)
{
    // If lazy value is non-zero for current
    // node of segment tree, then there are
    // some pending updates. So we need
    // to make sure that the pending updates
    // are done before making new updates.
    // Because this value may be used by
    // parent after recursive calls (See last
    // line of this function)
    if (lazy[node])
    {
         
        // Make pending updates using value
        // stored in lazy nodes
        lazy[node] = false;
        tree[node] = en - st + 1 - tree[node];
 
        // checking if it is not leaf node
        // because if it is leaf node then
        // we cannot go further
        if (st < en)
        {
            // We can postpone updating children
            // we don't need their new values now.
            // Since we are not yet updating children
            // of 'node', we need to set lazy flags
            // for the children
            lazy[node << 1] = !lazy[node << 1];
            lazy[1 + (node << 1)] = !lazy[1 + (node << 1)];
        }
    }
 
    // out of range
    if (st > en || us > en || ue < st)
    {
        return;
    }
 
    // Current segment is fully in range
    if (us <= st && en <= ue)
    {
        // Add the difference to current node
        tree[node] = en - st + 1 - tree[node];
 
        // same logic for checking leaf node or not
        if (st < en)
        {
            // This is where we store values in lazy nodes,
            // rather than updating the segment tree itself
            // Since we don't need these updated values now
            // we postpone updates by storing values in lazy[]
            lazy[node << 1] = !lazy[node << 1];
            lazy[1 + (node << 1)] = !lazy[1 + (node << 1)];
        }
        return;
    }
 
    // If not completely in rang,
    // but overlaps, recur for children,
    int mid = (st + en) / 2;
    toggle((node << 1), st, mid, us, ue);
    toggle((node << 1) + 1, mid + 1, en, us, ue);
 
    // And use the result of children
    // calls to update this node
    if (st < en)
    {
        tree[node] = tree[node << 1] +
                     tree[(node << 1) + 1];
    }
}
 
/* node --> Index of current node in the segment tree.
    Initially 0 is passed as root is always at'
    index 0
st & en --> Starting and ending indexes of the
            segment represented by current node,
            i.e., tree[node]
qs & qe --> Starting and ending indexes of query
            range */
// function to count number of 1's
// within given range
static int countQuery(int node, int st,
                      int en, int qs, int qe)
{
    // current node is out of range
    if (st > en || qs > en || qe < st)
    {
        return 0;
    }
 
    // If lazy flag is set for current
    // node of segment tree, then there
    // are some pending updates. So we
    // need to make sure that the pending
    // updates are done before processing
    // the sub sum query
    if (lazy[node])
    {
        // Make pending updates to this node.
        // Note that this node represents sum
        // of elements in arr[st..en] and
        // all these elements must be increased
        // by lazy[node]
        lazy[node] = false;
        tree[node] = en - st + 1 - tree[node];
 
        // checking if it is not leaf node because if
        // it is leaf node then we cannot go further
        if (st < en)
        {
            // Since we are not yet updating children os si,
            // we need to set lazy values for the children
            lazy[node << 1] = !lazy[node << 1];
            lazy[(node << 1) + 1] = !lazy[(node << 1) + 1];
        }
    }
 
    // At this point we are sure that pending
    // lazy updates are done for current node.
    // So we can return value If this segment
    // lies in range
    if (qs <= st && en <= qe)
    {
        return tree[node];
    }
 
    // If a part of this segment overlaps
    // with the given range
    int mid = (st + en) / 2;
    return countQuery((node << 1), st, mid, qs, qe) +
           countQuery((node << 1) + 1, mid + 1, en, qs, qe);
}
 
// Driver Code
public static void main(String args[])
{
    int n = 5;
    toggle(1, 0, n - 1, 1, 2); // Toggle 1 2
    toggle(1, 0, n - 1, 2, 4); // Toggle 2 4
 
    System.out.println(countQuery(1, 0, n - 1, 2, 3)); // Count 2 3
 
    toggle(1, 0, n - 1, 2, 4); // Toggle 2 4
 
    System.out.println(countQuery(1, 0, n - 1, 1, 4)); // Count 1 4
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python program to implement toggle and count
# queries on a binary array.
MAX = 100000
 
# segment tree to store count of 1's within range
tree = [0] * MAX
 
# bool type tree to collect the updates for toggling
# the values of 1 and 0 in given range
lazy = [False] * MAX
 
# function for collecting updates of toggling
# node --> index of current node in segment tree
# st --> starting index of current node
# en --> ending index of current node
# us --> starting index of range update query
# ue --> ending index of range update query
def toggle(node: int, st: int, en: int, us: int, ue: int):
 
    # If lazy value is non-zero for current node of segment
    # tree, then there are some pending updates. So we need
    # to make sure that the pending updates are done before
    # making new updates. Because this value may be used by
    # parent after recursive calls (See last line of this
    # function)
    if lazy[node]:
 
        # Make pending updates using value stored in lazy nodes
        lazy[node] = False
        tree[node] = en - st + 1 - tree[node]
 
        # checking if it is not leaf node because if
        # it is leaf node then we cannot go further
        if st < en:
 
            # We can postpone updating children we don't
            # need their new values now.
            # Since we are not yet updating children of 'node',
            # we need to set lazy flags for the children
            lazy[node << 1] = not lazy[node << 1]
            lazy[1 + (node << 1)] = not lazy[1 + (node << 1)]
 
    # out of range
    if st > en or us > en or ue < st:
        return
 
    # Current segment is fully in range
    if us <= st and en <= ue:
 
        # Add the difference to current node
        tree[node] = en - st + 1 - tree[node]
 
        # same logic for checking leaf node or not
        if st < en:
 
            # This is where we store values in lazy nodes,
            # rather than updating the segment tree itself
            # Since we don't need these updated values now
            # we postpone updates by storing values in lazy[]
            lazy[node << 1] = not lazy[node << 1]
            lazy[1 + (node << 1)] = not lazy[1 + (node << 1)]
        return
 
    # If not completely in rang, but overlaps, recur for
    # children,
    mid = (st + en) // 2
    toggle((node << 1), st, mid, us, ue)
    toggle((node << 1) + 1, mid + 1, en, us, ue)
 
    # And use the result of children calls to update this node
    if st < en:
        tree[node] = tree[node << 1] + tree[(node << 1) + 1]
 
# node --> Index of current node in the segment tree.
#         Initially 0 is passed as root is always at'
#         index 0
# st & en --> Starting and ending indexes of the
#             segment represented by current node,
#             i.e., tree[node]
# qs & qe --> Starting and ending indexes of query
#             range
# function to count number of 1's within given range
def countQuery(node: int, st: int, en: int, qs: int, qe: int) -> int:
 
    # current node is out of range
    if st > en or qs > en or qe < st:
        return 0
 
    # If lazy flag is set for current node of segment tree,
    # then there are some pending updates. So we need to
    # make sure that the pending updates are done before
    # processing the sub sum query
    if lazy[node]:
 
        # Make pending updates to this node. Note that this
        # node represents sum of elements in arr[st..en] and
        # all these elements must be increased by lazy[node]
        lazy[node] = False
        tree[node] = en - st + 1 - tree[node]
 
        # checking if it is not leaf node because if
        # it is leaf node then we cannot go further
        if st < en:
 
            # Since we are not yet updating children os si,
            # we need to set lazy values for the children
            lazy[node << 1] = not lazy[node << 1]
            lazy[(node << 1) + 1] = not lazy[(node << 1) + 1]
 
    # At this point we are sure that pending lazy updates
    # are done for current node. So we can return value
    # If this segment lies in range
    if qs <= st and en <= qe:
        return tree[node]
 
    # If a part of this segment overlaps with the given range
    mid = (st + en) // 2
    return countQuery((node << 1), st, mid, qs, qe) + countQuery(
        (node << 1) + 1, mid + 1, en, qs, qe)
 
# Driver Code
if __name__ == "__main__":
 
    n = 5
    toggle(1, 0, n - 1, 1, 2) # Toggle 1 2
    toggle(1, 0, n - 1, 2, 4) # Toggle 2 4
 
    print(countQuery(1, 0, n - 1, 2, 3)) # count 2 3
 
    toggle(1, 0, n - 1, 2, 4) # Toggle 2 4
 
    print(countQuery(1, 0, n - 1, 1, 4)) # count 1 4
 
# This code is contributed by
# sanjeev2552


C#




// C# program to implement toggle and
// count queries on a binary array.
using System;
 
public class GFG{
 
    static readonly int MAX = 100000;
 
    // segment tree to store count
    // of 1's within range
    static int []tree = new int[MAX];
 
    // bool type tree to collect the updates
    // for toggling the values of 1 and 0 in
    // given range
    static bool []lazy = new bool[MAX];
 
    // function for collecting updates of toggling
    // node --> index of current node in segment tree
    // st --> starting index of current node
    // en --> ending index of current node
    // us --> starting index of range update query
    // ue --> ending index of range update query
    static void toggle(int node, int st,
                    int en, int us, int ue)
    {
        // If lazy value is non-zero for current
        // node of segment tree, then there are
        // some pending updates. So we need
        // to make sure that the pending updates
        // are done before making new updates.
        // Because this value may be used by
        // parent after recursive calls (See last
        // line of this function)
        if (lazy[node])
        {
 
            // Make pending updates using value
            // stored in lazy nodes
            lazy[node] = false;
            tree[node] = en - st + 1 - tree[node];
 
            // checking if it is not leaf node
            // because if it is leaf node then
            // we cannot go further
            if (st < en)
            {
                // We can postpone updating children
                // we don't need their new values now.
                // Since we are not yet updating children
                // of 'node', we need to set lazy flags
                // for the children
                lazy[node << 1] = !lazy[node << 1];
                lazy[1 + (node << 1)] = !lazy[1 + (node << 1)];
            }
        }
 
        // out of range
        if (st > en || us > en || ue < st)
        {
            return;
        }
 
        // Current segment is fully in range
        if (us <= st && en <= ue)
        {
            // Add the difference to current node
            tree[node] = en - st + 1 - tree[node];
 
            // same logic for checking leaf node or not
            if (st < en)
            {
                // This is where we store values in lazy nodes,
                // rather than updating the segment tree itself
                // Since we don't need these updated values now
                // we postpone updates by storing values in lazy[]
                lazy[node << 1] = !lazy[node << 1];
                lazy[1 + (node << 1)] = !lazy[1 + (node << 1)];
            }
            return;
        }
 
        // If not completely in rang,
        // but overlaps, recur for children,
        int mid = (st + en) / 2;
        toggle((node << 1), st, mid, us, ue);
        toggle((node << 1) + 1, mid + 1, en, us, ue);
 
        // And use the result of children
        // calls to update this node
        if (st < en)
        {
            tree[node] = tree[node << 1] +
                        tree[(node << 1) + 1];
        }
    }
 
    /* node --> Index of current node in the segment tree.
        Initially 0 is passed as root is always at'
        index 0
    st & en --> Starting and ending indexes of the
                segment represented by current node,
                i.e., tree[node]
    qs & qe --> Starting and ending indexes of query
                range */
    // function to count number of 1's
    // within given range
    static int countQuery(int node, int st,
                        int en, int qs, int qe)
    {
        // current node is out of range
        if (st > en || qs > en || qe < st)
        {
            return 0;
        }
 
        // If lazy flag is set for current
        // node of segment tree, then there
        // are some pending updates. So we
        // need to make sure that the pending
        // updates are done before processing
        // the sub sum query
        if (lazy[node])
        {
            // Make pending updates to this node.
            // Note that this node represents sum
            // of elements in arr[st..en] and
            // all these elements must be increased
            // by lazy[node]
            lazy[node] = false;
            tree[node] = en - st + 1 - tree[node];
 
            // checking if it is not leaf node because if
            // it is leaf node then we cannot go further
            if (st < en)
            {
                // Since we are not yet updating children os si,
                // we need to set lazy values for the children
                lazy[node << 1] = !lazy[node << 1];
                lazy[(node << 1) + 1] = !lazy[(node << 1) + 1];
            }
        }
 
        // At this point we are sure that pending
        // lazy updates are done for current node.
        // So we can return value If this segment
        // lies in range
        if (qs <= st && en <= qe)
        {
            return tree[node];
        }
 
        // If a part of this segment overlaps
        // with the given range
        int mid = (st + en) / 2;
        return countQuery((node << 1), st, mid, qs, qe) +
            countQuery((node << 1) + 1, mid + 1, en, qs, qe);
    }
 
    // Driver Code
    public static void Main()
    {
        int n = 5;
        toggle(1, 0, n - 1, 1, 2); // Toggle 1 2
        toggle(1, 0, n - 1, 2, 4); // Toggle 2 4
 
        Console.WriteLine(countQuery(1, 0, n - 1, 2, 3)); // Count 2 3
 
        toggle(1, 0, n - 1, 2, 4); // Toggle 2 4
 
        Console.WriteLine(countQuery(1, 0, n - 1, 1, 4)); // Count 1 4
    }
}
 
/*This code is contributed by PrinciRaj1992*/


Javascript




<script>
 
// JavaScript program to implement toggle and
// count queries on a binary array.
 
let MAX = 100000;
 
// segment tree to store count
// of 1's within range
let tree=new Array(MAX);
 
// bool type tree to collect the updates
// for toggling the values of 1 and 0 in
// given range
let lazy = new Array(MAX);
 
for(let i=0;i<MAX;i++)
{
    tree[i]=0;
    lazy[i]=false;
}
 
// function for collecting updates of toggling
// node --> index of current node in segment tree
// st --> starting index of current node
// en --> ending index of current node
// us --> starting index of range update query
// ue --> ending index of range update query
function toggle(node,st,en,us,ue)
{
    // If lazy value is non-zero for current
    // node of segment tree, then there are
    // some pending updates. So we need
    // to make sure that the pending updates
    // are done before making new updates.
    // Because this value may be used by
    // parent after recursive calls (See last
    // line of this function)
    if (lazy[node])
    {
           
        // Make pending updates using value
        // stored in lazy nodes
        lazy[node] = false;
        tree[node] = en - st + 1 - tree[node];
   
        // checking if it is not leaf node
        // because if it is leaf node then
        // we cannot go further
        if (st < en)
        {
            // We can postpone updating children
            // we don't need their new values now.
            // Since we are not yet updating children
            // of 'node', we need to set lazy flags
            // for the children
            lazy[node << 1] = !lazy[node << 1];
            lazy[1 + (node << 1)] = !lazy[1 + (node << 1)];
        }
    }
   
    // out of range
    if (st > en || us > en || ue < st)
    {
        return;
    }
   
    // Current segment is fully in range
    if (us <= st && en <= ue)
    {
        // Add the difference to current node
        tree[node] = en - st + 1 - tree[node];
   
        // same logic for checking leaf node or not
        if (st < en)
        {
            // This is where we store values in lazy nodes,
            // rather than updating the segment tree itself
            // Since we don't need these updated values now
            // we postpone updates by storing values in lazy[]
            lazy[node << 1] = !lazy[node << 1];
            lazy[1 + (node << 1)] = !lazy[1 + (node << 1)];
        }
        return;
    }
   
    // If not completely in rang,
    // but overlaps, recur for children,
    let mid = Math.floor((st + en) / 2);
    toggle((node << 1), st, mid, us, ue);
    toggle((node << 1) + 1, mid + 1, en, us, ue);
   
    // And use the result of children
    // calls to update this node
    if (st < en)
    {
        tree[node] = tree[node << 1] +
                     tree[(node << 1) + 1];
    }
}
 
/* node --> Index of current node in the segment tree.
    Initially 0 is passed as root is always at'
    index 0
st & en --> Starting and ending indexes of the
            segment represented by current node,
            i.e., tree[node]
qs & qe --> Starting and ending indexes of query
            range */
// function to count number of 1's
// within given range
function countQuery(node,st,en,qs,qe)
{
    // current node is out of range
    if (st > en || qs > en || qe < st)
    {
        return 0;
    }
   
    // If lazy flag is set for current
    // node of segment tree, then there
    // are some pending updates. So we
    // need to make sure that the pending
    // updates are done before processing
    // the sub sum query
    if (lazy[node])
    {
        // Make pending updates to this node.
        // Note that this node represents sum
        // of elements in arr[st..en] and
        // all these elements must be increased
        // by lazy[node]
        lazy[node] = false;
        tree[node] = en - st + 1 - tree[node];
   
        // checking if it is not leaf node because if
        // it is leaf node then we cannot go further
        if (st < en)
        {
            // Since we are not yet updating children os si,
            // we need to set lazy values for the children
            lazy[node << 1] = !lazy[node << 1];
            lazy[(node << 1) + 1] = !lazy[(node << 1) + 1];
        }
    }
   
    // At this point we are sure that pending
    // lazy updates are done for current node.
    // So we can return value If this segment
    // lies in range
    if (qs <= st && en <= qe)
    {
        return tree[node];
    }
   
    // If a part of this segment overlaps
    // with the given range
    let mid = Math.floor((st + en) / 2);
    return countQuery((node << 1), st, mid, qs, qe) +
           countQuery((node << 1) + 1, mid + 1, en, qs, qe);
}
 
// Driver Code
let n = 5;
toggle(1, 0, n - 1, 1, 2); // Toggle 1 2
toggle(1, 0, n - 1, 2, 4); // Toggle 2 4
 
document.write(countQuery(1, 0, n - 1, 2, 3)+"<br>"); // Count 2 3
 
toggle(1, 0, n - 1, 2, 4); // Toggle 2 4
 
document.write(countQuery(1, 0, n - 1, 1, 4)+"<br>"); // Count 1 4
 
 
// This code is contributed by rag2127
 
</script>


Output:  

1
2

The time complexity of the given program is O(log n) for both toggle() and countQuery() functions.

The space complexity of the program is O(n).
This article is contributed by Shashank Mishra ( Gullu ). If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments