Tuesday, November 26, 2024
Google search engine
HomeData Modelling & AICount all disjoint pairs having absolute difference at least K from a...

Count all disjoint pairs having absolute difference at least K from a given array

Given an array arr[] consisting of N integers, the task is to count all disjoint pairs having absolute difference of at least K
Note: The pair (arr[i], arr[j]) and (arr[j], arr[i]) are considered as the same pair.

Examples:

Input: arr[] = {1, 3, 3, 5}, K = 2
Output: 2
Explanation:
The following two pairs satisfy the necessary conditions: 

  • {arr[0], arr[1]} = (1, 3) whose absolute difference is |1 – 3| = 2
  • {arr[2], arr[3]} = (3, 5) whose absolute difference is |3 – 5| = 2

Input: arr[] = {1, 2, 3, 4}, K = 3
Output: 1
Explanation:
The only pair satisfying the necessary conditions is {arr[0], arr[3]} = (1, 4), since |1 – 4| = 3.

Naive Approach: The simplest approach is to generate all possible pairs of the given array and count those pairs whose absolute difference is at least K and to keep track of elements that have already been taken into pairs, using an auxiliary array visited[] to mark the paired elements.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to count distinct pairs
// with absolute difference atleast K
void countPairsWithDiffK(int arr[],
                         int N, int K)
{
    // Track the element that
    // have been paired
    int vis[N];
    memset(vis, 0, sizeof(vis));
 
    // Stores count of distinct pairs
    int count = 0;
 
    // Pick all elements one by one
    for (int i = 0; i < N; i++) {
 
        // If already visited
        if (vis[i] == 1)
            continue;
 
        for (int j = i + 1; j < N; j++) {
 
            // If already visited
            if (vis[j] == 1)
                continue;
 
            // If difference is at least K
            if (abs(arr[i] - arr[j]) >= K) {
 
                // Mark element as visited and
                // increment the count
                count++;
                vis[i] = 1;
                vis[j] = 1;
                break;
            }
        }
    }
 
    // Print the final count
    cout << count << ' ';
}
 
// Driver Code
int main()
{
    // Given arr[]
    int arr[] = { 1, 3, 3, 5 };
 
    // Size of array
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Given difference K
    int K = 2;
 
    // Function Call
    countPairsWithDiffK(arr, N, K);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG{
  
// Function to count distinct pairs
// with absolute difference atleast K
static void countPairsWithDiffK(int arr[],
                                int N, int K)
{
     
    // Track the element that
    // have been paired
    int []vis = new int[N];
    Arrays.fill(vis, 0);
     
    // Stores count of distinct pairs
    int count = 0;
 
    // Pick all elements one by one
    for(int i = 0; i < N; i++)
    {
         
        // If already visited
        if (vis[i] == 1)
            continue;
 
        for(int j = i + 1; j < N; j++)
        {
             
            // If already visited
            if (vis[j] == 1)
                continue;
 
            // If difference is at least K
            if (Math.abs(arr[i] - arr[j]) >= K)
            {
                 
                // Mark element as visited and
                // increment the count
                count++;
                vis[i] = 1;
                vis[j] = 1;
                break;
            }
        }
    }
 
    // Print the final count
    System.out.print(count);
}
 
// Driver Code
public static void main(String args[])
{
     
    // Given arr[]
    int arr[] = { 1, 3, 3, 5 };
 
    // Size of array
    int N = arr.length;
 
    // Given difference K
    int K = 2;
 
    // Function Call
    countPairsWithDiffK(arr, N, K);
}
}
 
// This code is contributed by bgangwar59


Python3




# Python3 program for the above approach
 
# Function to count distinct pairs
# with absolute difference atleast K
def countPairsWithDiffK(arr, N, K):
     
    # Track the element that
    # have been paired
    vis = [0] * N
     
    # Stores count of distinct pairs
    count = 0
 
    # Pick all elements one by one
    for i in range(N):
         
        # If already visited
        if (vis[i] == 1):
            continue
 
        for j in range(i + 1, N):
             
            # If already visited
            if (vis[j] == 1):
                continue
 
            # If difference is at least K
            if (abs(arr[i] - arr[j]) >= K):
 
                # Mark element as visited and
                # increment the count
                count += 1
                vis[i] = 1
                vis[j] = 1
                break
 
    # Print the final count
    print(count)
 
# Driver Code
if __name__ == '__main__':
     
    # Given arr[]
    arr = [ 1, 3, 3, 5 ]
 
    # Size of array
    N = len(arr)
     
    # Given difference K
    K = 2
 
    # Function Call
    countPairsWithDiffK(arr, N, K)
 
# This code is contributed by mohit kumar 29


C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to count distinct pairs
// with absolute difference atleast K
static void countPairsWithDiffK(int[] arr, int N,
                                int K)
{
     
    // Track the element that
    // have been paired
    int[] vis = new int[N];
 
    // Stores count of distinct pairs
    int count = 0;
 
    // Pick all elements one by one
    for(int i = 0; i < N; i++)
    {
         
        // If already visited
        if (vis[i] == 1)
            continue;
             
        for(int j = i + 1; j < N; j++)
        {
             
            // If already visited
            if (vis[j] == 1)
                continue;
 
            // If difference is at least K
            if (Math.Abs(arr[i] - arr[j]) >= K)
            {
                 
                // Mark element as visited and
                // increment the count
                count++;
                vis[i] = 1;
                vis[j] = 1;
                break;
            }
        }
    }
 
    // Print the final count
    Console.Write(count);
}
 
// Driver Code
public static void Main()
{
     
    // Given arr[]
    int[] arr = { 1, 3, 3, 5 };
 
    // Size of array
    int N = arr.Length;
 
    // Given difference K
    int K = 2;
 
    // Function Call
    countPairsWithDiffK(arr, N, K);
}
}
 
// This code is contributed by chitranayal


Javascript




<script>
 
// JavaScript implementation
// for above approach
 
// Function to count distinct pairs
// with absolute difference atleast K
function countPairsWithDiffK(arr, N, K)
{
    // Track the element that
    // have been paired
    var vis = new Array(N);
    vis.fill(0);
 
    // Stores count of distinct pairs
    var count = 0;
 
    // Pick all elements one by one
    for (var i = 0; i < N; i++) {
 
        // If already visited
        if (vis[i] == 1)
            continue;
 
        for (var j = i + 1; j < N; j++) {
 
            // If already visited
            if (vis[j] == 1)
                continue;
 
            // If difference is at least K
            if (Math.abs(arr[i] - arr[j]) >= K) {
 
                // Mark element as visited and
                // increment the count
                count++;
                vis[i] = 1;
                vis[j] = 1;
                break;
            }
        }
    }
 
    // Print the final count
    document.write( count + " ");
}
 
    var arr = [ 1, 3, 3, 5 ];
 
    // Size of array
    var N = arr.length;
 
    // Given difference K
    var K = 2;
 
    // Function Call
    countPairsWithDiffK(arr, N, K);
 
 
// This code is contributed by SoumikMondal
 
</script>


Output

2 

Time Complexity: O(N2)
Auxiliary Space: O(N)

Efficient Approach: The efficient idea is to use Binary Search to find the first occurrence having a difference of at least K. Below are the steps:

  • Sort the given array in increasing order.
  • Initialize cnt to 0 which will store the count of all possible pairs.
  • Perform the Binary Search as per the following:
    • Initialize left as 0 and right as N/2 + 1.
    • Find the value of mid as (left + right) / 2.
    • Check if mid number of pairs can be formed by pairing leftmost M elements with rightmost M elements i.e., check if arr[0] – arr[N – M] ? d, arr[1] – arr[N -M + 1] ? d, …, arr[M – 1] – arr[N – 1] ? d.
    • In the above steps, traverse the array over the range [0, M] and if there exists an index whose abs(arr[N – M + i] – arr[i]) is less than K then update right as (mid – 1).
    • Otherwise, update left as mid + 1 and cnt as mid.
  • After the above step, print the value of cnt as all possible count of pairs.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if it is possible to
// form M pairs with abs diff at least K
bool isValid(int arr[], int n, int m,
             int d)
{
    // Traverse the array over [0, M]
    for (int i = 0; i < m; i++) {
 
        // If valid index
        if (abs(arr[n - m + i]
                - arr[i])
            < d) {
            return 0;
        }
    }
 
    // Return 1
    return 1;
}
 
// Function to count distinct pairs
// with absolute difference atleast K
int countPairs(int arr[], int N, int K)
{
    // Stores the count of all
    // possible pairs
    int ans = 0;
 
    // Initialize left and right
    int left = 0, right = N / 2 + 1;
 
    // Sort the array
    sort(arr, arr + N);
 
    // Perform Binary Search
    while (left < right) {
 
        // Find the value of mid
        int mid = (left + right) / 2;
 
        // Check valid index
        if (isValid(arr, N, mid, K)) {
 
            // Update ans
            ans = mid;
            left = mid + 1;
        }
        else
            right = mid - 1;
    }
 
    // Print the answer
    cout << ans << ' ';
}
 
// Driver Code
int main()
{
    // Given array arr[]
    int arr[] = { 1, 3, 3, 5 };
 
    // Given difference K
    int K = 2;
 
    // Size of the array
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Function call
    countPairs(arr, N, K);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG{
  
// Function to check if it is possible to
// form M pairs with abs diff at least K
static int isValid(int arr[], int n, int m,
                   int d)
{
     
    // Traverse the array over [0, M]
    for(int i = 0; i < m; i++)
    {
         
        // If valid index
        if (Math.abs(arr[n - m + i] - arr[i]) < d)
        {
            return 0;
        }
    }
 
    // Return 1
    return 1;
}
 
// Function to count distinct pairs
// with absolute difference atleast K
static void countPairs(int arr[], int N, int K)
{
     
    // Stores the count of all
    // possible pairs
    int ans = 0;
 
    // Initialize left and right
    int left = 0, right = N / 2 + 1;
 
    // Sort the array
    Arrays.sort(arr);
 
    // Perform Binary Search
    while (left < right)
    {
         
        // Find the value of mid
        int mid = (left + right) / 2;
 
        // Check valid index
        if (isValid(arr, N, mid, K) == 1)
        {
             
            // Update ans
            ans = mid;
            left = mid + 1;
        }
        else
            right = mid - 1;
    }
 
    // Print the answer
    System.out.print(ans);
}
 
// Driver Code
public static void main(String args[])
{
     
    // Given array arr[]
    int arr[] = { 1, 3, 3, 5 };
 
    // Given difference K
    int K = 2;
 
    // Size of the array
    int N = arr.length;
 
    // Function call
    countPairs(arr, N, K);
}
}
 
// This code is contributed by bgangwar59


Python3




# Python3 program for the above approach
 
# Function to check if it is possible to
# form M pairs with abs diff at least K
def isValid(arr, n, m, d):
     
    # Traverse the array over [0, M]
    for i in range(m):
         
        # If valid index
        if (abs(arr[n - m + i] - arr[i]) < d):
            return 0
 
    # Return 1
    return 1
 
# Function to count distinct pairs
# with absolute difference atleast K
def countPairs(arr, N, K):
     
    # Stores the count of all
    # possible pairs
    ans = 0
 
    # Initialize left and right
    left = 0
    right = N // 2 + 1
 
    # Sort the array
    arr.sort(reverse = False)
 
    # Perform Binary Search
    while (left < right):
         
        # Find the value of mid
        mid = (left + right) // 2
 
        # Check valid index
        if (isValid(arr, N, mid, K)):
             
            # Update ans
            ans = mid
            left = mid + 1
        else:
            right = mid - 1
 
    # Print the answer
    print(ans, end = "")
 
# Driver Code
if __name__ == '__main__':
     
    # Given array arr[]
    arr = [ 1, 3, 3, 5 ]
 
    # Given difference K
    K = 2
 
    # Size of the array
    N = len(arr)
 
    # Function call
    countPairs(arr, N, K)
 
# This code is contributed by bgangwar59


C#




// C# program for the
// above approach
using System;
class GFG{
  
// Function to check if it
// is possible to form M
// pairs with abs diff at
// least K
static int isValid(int []arr, int n,
                   int m, int d)
{   
  // Traverse the array over
  // [0, M]
  for(int i = 0; i < m; i++)
  {
    // If valid index
    if (Math.Abs(arr[n - m + i] -
                 arr[i]) < d)
    {
      return 0;
    }
  }
 
  // Return 1
  return 1;
}
 
// Function to count distinct
// pairs with absolute difference
// atleast K
static void countPairs(int []arr,
                       int N, int K)
{   
  // Stores the count of all
  // possible pairs
  int ans = 0;
 
  // Initialize left
  // and right
  int left = 0,
      right = N / 2 + 1;
 
  // Sort the array
  Array.Sort(arr);
 
  // Perform Binary Search
  while (left < right)
  {
    // Find the value of mid
    int mid = (left +
               right) / 2;
 
    // Check valid index
    if (isValid(arr, N,
                mid, K) == 1)
    {
      // Update ans
      ans = mid;
      left = mid + 1;
    }
    else
      right = mid - 1;
  }
 
  // Print the answer
  Console.WriteLine(ans);
}
 
// Driver Code
public static void Main()
{   
  // Given array arr[]
  int []arr = {1, 3, 3, 5};
 
  // Given difference K
  int K = 2;
 
  // Size of the array
  int N = arr.Length;
 
  // Function call
  countPairs(arr, N, K);
}
}
 
// This code is contributed by surendra_gangwar


Javascript




<script>
// javascript program for the above approach
 
    // Function to check if it is possible to
    // form M pairs with abs diff at least K
    function isValid(arr , n , m , d) {
 
        // Traverse the array over [0, M]
        for (i = 0; i < m; i++) {
 
            // If valid index
            if (Math.abs(arr[n - m + i] - arr[i]) < d) {
                return 0;
            }
        }
 
        // Return 1
        return 1;
    }
 
    // Function to count distinct pairs
    // with absolute difference atleast K
    function countPairs(arr , N , K) {
 
        // Stores the count of all
        // possible pairs
        var ans = 0;
 
        // Initialize left and right
        var left = 0, right = N / 2 + 1;
 
        // Sort the array
        arr.sort();
 
        // Perform Binary Search
        while (left < right) {
 
            // Find the value of mid
            var mid = parseInt((left + right) / 2);
 
            // Check valid index
            if (isValid(arr, N, mid, K) == 1) {
 
                // Update ans
                ans = mid;
                left = mid + 1;
            } else
                right = mid - 1;
        }
 
        // Print the answer
        document.write(ans);
    }
 
    // Driver Code
     
 
        // Given array arr
        var arr = [ 1, 3, 3, 5 ];
 
        // Given difference K
        var K = 2;
 
        // Size of the array
        var N = arr.length;
 
        // Function call
        countPairs(arr, N, K);
 
// This code contributed by gauravrajput1
</script>


Output

2 

Time Complexity: O(N*log N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments