Given two strings S and T representing non-negative rational numbers, the task is to check if the values of S and T are equal or not. If found to be true, then print “YES”. Otherwise, print “NO”.
Note: Any rational number can be represented in one of the following three ways:
- <IntegerPart> (e.g. 0, 12, 123)
- <IntegerPart><.><NonRepeatingPart> (e.g. 0.5, 1., 2.12, 2.0001)
- <IntegerPart><.><NonRepeatingPart><(><RepeatingPart><)> (e.g. 0.1(6), 0.9(9), 0.00(1212))
Examples:
Input: S = “0.(52)”, T = “0.5(25)”
Output: YES
Explanation: The rational number “0.(52)” can be represented as 0.52525252… The rational number “0.5(25)” can be represented as 0.525252525…. Therefore, the required output is “YES”.Input: S = “0.9(9)”, T = “1.” Output: YES Explanation: The rational number “0.9(9)” can be represented as 0.999999999…, it is equal to 1. The rational number “1.” can be represented as the number 1. Therefore, the required output is “YES”.
Approach: The idea is to convert the rational numbers into fractions and then check if fractions of both the rational numbers are equal or not. If found to be true, then print “YES”. Otherwise, print “NO”. Following are the observations:
The repeating portion of a decimal expansion is conventionally denoted within a pair of round brackets.
For example: 1 / 6 = 0.16666666… = 0.1(6) = 0.1666(6) = 0.166(66) Both 0.1(6) or 0.1666(6) or 0.166(66) are correct representations of 1 / 6.
Any rational numbers can be converted into fractions based on the following observations:
Let x = 0.5(25) —> (1) Integer part = 0, Non-repeating part = 5, Repeating part = 25 Multiply both sides of equation (1) by 10 raised to the power of length of non-repeating part, i.e. 10 * x = 5.(25) —> (2) Multiply both sides of equation (1) by 10 raised to the power of (length of non-repeating part + length of repeating part), 1000 * x = 525.(25) —> (3) Subtract equation (2) from equation (3)
1000 * x – 10 * x = 525.(25)-5.(25)
990 * x = 520
? x = 520 / 990
Follow the steps below to solve the problem:
- Convert both the rational numbers into fractions using the above observations.
- Check if both the fractions of the numbers are equal or not. If found to be true, then print “YES”.
- Otherwise, print “NO”.
Below is the implementation of the above approach:
C++
#include <iostream> #include <string> #include <vector> using namespace std; class Fraction { public : long long p, q; // Constructor function to initialize the object of the class Fraction( long long p, long long q) : p(p), q(q) {} string ToString() { return to_string(p) + "/" + to_string(q); } }; class Rational { private : string integer, nonRepeating, repeating; // Constructor function to initialize the object of the class Rational(string integer, string nonRepeating, string repeating) : integer(integer), nonRepeating(nonRepeating), repeating(repeating) {} public : // Function to split the string into integer, repeating & non-repeating part static Rational Parse(string s) { // Split s into parts vector<string> parts; size_t startPos = 0; size_t endPos = 0; while ((endPos = s.find_first_of( ".()]" , startPos)) != string::npos) { parts.push_back(s.substr(startPos, endPos - startPos)); startPos = endPos + 1; } if (startPos < s.length()) { parts.push_back(s.substr(startPos, s.length() - startPos)); } return Rational( parts.size() >= 1 ? parts[0] : "" , parts.size() >= 2 ? parts[1] : "" , parts.size() >= 3 ? parts[2] : "" ); } // Function to convert the string into fraction Fraction ToFraction() { const long long a = TenPow(nonRepeating.length()); const long long i = stoll(integer + nonRepeating); // If there is no repeating part, then form a new fraction of the form i/a if (repeating.length() == 0) { return Fraction(i, a); } else { // Otherwise const long long b = TenPow(nonRepeating.length() + repeating.length()); const long long j = stoll(integer + nonRepeating + repeating); return Fraction(j - i, b - a); } } string ToString() { return integer + "." + nonRepeating + "(" + repeating + ")" ; } static long long TenPow( int x) { if (x < 0) { throw invalid_argument( "x must be non-negative" ); } long long r = 1; while (--x >= 0) { r *= 10; } return r; } }; class GFG { public : // Function to check if the string S and T are equal or not static bool IsRationalEqual(string s, string t) { // Stores the fractional part of s const Fraction f1 = Rational::Parse(s).ToFraction(); // Stores the fractional part of t const Fraction f2 = Rational::Parse(t).ToFraction(); // If the condition satisfies, return true; otherwise return false return (f1.p * f2.q == f2.p * f1.q); } // Driver Code static void Main() { // Given S and T const string S = "0.(52)" ; const string T = "0.5(25)" ; // Function Call if (IsRationalEqual(S, T)) { cout << "YES" << endl; } else { cout << "NO" << endl; } } }; int main() { GFG::Main(); return 0; } |
Java
// Java program to implement // the above approach import java.io.*; import java.util.*; class GFG { // Function to check if the string S and T // are equal or not public static boolean isRationalEqual(String s, String t) { // Stores the fractional part of s Fraction f1 = Rational.parse(s).toFraction(); // Stores the fractional part of t Fraction f2 = Rational.parse(t).toFraction(); // If the condition satisfies, returns true // otherwise return false return f1.p * f2.q == f2.p * f1.q; } // Rational class having integer, non-repeating // and repeating part of the number public static class Rational { private final String integer, nonRepeating, repeating; // Constructor function to initialize // the object of the class private Rational(String integer, String nonRepeating, String repeating) { // Stores integer part this .integer = integer; // Stores non repeating part this .nonRepeating = nonRepeating; // Stores repeating part this .repeating = repeating; } // Function to split the string into // integer, repeating & non-repeating part public static Rational parse(String s) { // Split s into parts String[] parts = s.split( "[.()]" ); return new Rational( parts.length >= 1 ? parts[ 0 ] : "" , parts.length >= 2 ? parts[ 1 ] : "" , parts.length >= 3 ? parts[ 2 ] : "" ); } // Function to convert the string // into fraction public Fraction toFraction() { long a = tenpow(nonRepeating.length()); long i = Long.parseLong(integer + nonRepeating); // If there is no repeating part, then // form a new fraction of the form i/a if (repeating.length() == 0 ) { return new Fraction(i, a); } // Otherwise else { long b = tenpow(nonRepeating.length() + repeating.length()); long j = Long.parseLong( integer + nonRepeating + repeating); // Form the new Fraction and return return new Fraction(j - i, b - a); } } public String toString() { return String.format( "%s.%s(%s)" , integer, nonRepeating, repeating); } } // Fraction class having numerator as p // and denominator as q public static class Fraction { private final long p, q; // Constructor function to initialize // the object of the class private Fraction( long p, long q) { this .p = p; this .q = q; } public String toString() { return String.format( "%d/%d" , p, q); } } // Function to find 10 raised // to power of x public static long tenpow( int x) { assert x >= 0 ; long r = 1 ; while (--x >= 0 ) { r *= 10 ; } return r; } // Driver Code public static void main(String[] args) { // Given S and T String S = "0.(52)" , T = "0.5(25)" ; // Function Call if (isRationalEqual(S, T)) { System.out.println( "YES" ); } else { System.out.println( "NO" ); } // Print result } } |
Python3
import re class GFG: # Function to check if the string S and T are equal or not @staticmethod def isRationalEqual(s, t): # Stores the fractional part of s f1 = Rational.parse(s).toFraction() # Stores the fractional part of t f2 = Rational.parse(t).toFraction() # If the condition satisfies, returns true # otherwise return false return f1.p * f2.q = = f2.p * f1.q @staticmethod def tenpow(x): if x < 0 : return None r = 1 while x > = 0 : r * = 10 x - = 1 return r # Driver Code @staticmethod def main(): # Given S and T S = '0.(52)' T = '0.5(25)' # Function Call if GFG.isRationalEqual(S, T): print ( 'YES' ) else : print ( 'NO' ) # Rational class having integer, non-repeating # and repeating part of the number class Rational: # Constructor function to initialize # the object of the class def __init__( self , integer, nonRepeating, repeating): self .integer = integer self .nonRepeating = nonRepeating self .repeating = repeating # Function to split the string into # integer, repeating & non-repeating part @staticmethod def parse(s): # Split s into parts parts = re.split(r '[.()]' , s) return Rational( parts[ 0 ] if len (parts) > = 1 else '', parts[ 1 ] if len (parts) > = 2 else '', parts[ 2 ] if len (parts) > = 3 else '', ) # Function to convert the string into fraction def toFraction( self ): a = GFG.tenpow( len ( self .nonRepeating)) i = int ( self .integer + self .nonRepeating) # If there is no repeating part, then # form a new fraction of the form i/a if len ( self .repeating) = = 0 : return Fraction(i, a) else : # Otherwise b = GFG.tenpow( len ( self .nonRepeating) + len ( self .repeating)) j = int ( self .integer + self .nonRepeating + self .repeating) return Fraction(j - i, b - a) def __str__( self ): return f '{self.integer}.{self.nonRepeating}({self.repeating})' # Fraction class having numerator as p # and denominator as q class Fraction: # Constructor function to initialize # the object of the class def __init__( self , p, q): self .p = p self .q = q def __str__( self ): return f '{self.p}/{self.q}' GFG.main() |
C#
using System; class GFG { // Function to check if the string S and T // are equal or not public static bool IsRationalEqual( string s, string t) { // Stores the fractional part of s Fraction f1 = Rational.Parse(s).ToFraction(); // Stores the fractional part of t Fraction f2 = Rational.Parse(t).ToFraction(); // If the condition satisfies, returns true // otherwise return false return f1.p * f2.q == f2.p * f1.q; } // Rational class having integer, non-repeating // and repeating part of the number public class Rational { private readonly string integer, nonRepeating, repeating; // Constructor function to initialize // the object of the class private Rational( string integer, string nonRepeating, string repeating) { // Stores integer part this .integer = integer; // Stores non-repeating part this .nonRepeating = nonRepeating; // Stores repeating part this .repeating = repeating; } // Function to split the string into // integer, repeating & non-repeating part public static Rational Parse( string s) { // Split s into parts string [] parts = s.Split( new char [] { '.' , '(' , ')' }); return new Rational( parts.Length >= 1 ? parts[0] : "" , parts.Length >= 2 ? parts[1] : "" , parts.Length >= 3 ? parts[2] : "" ); } // Function to convert the string // into fraction public Fraction ToFraction() { long a = TenPow(nonRepeating.Length); long i = long .Parse(integer + nonRepeating); // If there is no repeating part, then // form a new fraction of the form i/a if (repeating.Length == 0) { return new Fraction(i, a); } // Otherwise else { long b = TenPow(nonRepeating.Length + repeating.Length); long j = long .Parse(integer + nonRepeating + repeating); // Form the new Fraction and return return new Fraction(j - i, b - a); } } public override string ToString() { return $ "{integer}.{nonRepeating}({repeating})" ; } } // Fraction class having numerator as p // and denominator as q public class Fraction { public long p, q; // Constructor function to initialize // the object of the class public Fraction( long p, long q) { this .p = p; this .q = q; } public override string ToString() { return $ "{p}/{q}" ; } } // Function to find 10 raised // to power of x public static long TenPow( int x) { if (x < 0) { throw new ArgumentException( "x must be non-negative" ); } long r = 1; while (--x >= 0) { r *= 10; } return r; } // Driver Code public static void Main( string [] args) { // Given S and T string S = "0.(52)" , T = "0.5(25)" ; // Function Call if (IsRationalEqual(S, T)) { Console.WriteLine( "YES" ); } else { Console.WriteLine( "NO" ); } } } // This code is contributed by Dwaipayan Bandyopadhyay |
Javascript
// JavaScript program to implement // the above approach class GFG { // Function to check if the string S and T // are equal or not static isRationalEqual(s, t) { // Stores the fractional part of s const f1 = Rational.parse(s).toFraction(); // Stores the fractional part of t const f2 = Rational.parse(t).toFraction(); // If the condition satisfies, returns true // otherwise return false return f1.p * f2.q === f2.p * f1.q; } static tenpow(x) { if (x < 0) return undefined; let r = 1; while (--x >= 0) { r *= 10; } return r; } // Driver Code static main() { // Given S and T const S = '0.(52)' ; const T = '0.5(25)' ; // Function Call if (GFG.isRationalEqual(S, T)) { console.log( 'YES' ); } else { console.log( 'NO' ); } } } // Rational class having integer, non-repeating // and repeating part of the number class Rational { // Constructor function to initialize // the object of the class constructor(integer, nonRepeating, repeating) { this .integer = integer; this .nonRepeating = nonRepeating; this .repeating = repeating; } // Function to split the string into // integer, repeating & non-repeating part static parse(s) { // Split s into parts const parts = s.split(/[.()]/); return new Rational( parts.length >= 1 ? parts[0] : '' , parts.length >= 2 ? parts[1] : '' , parts.length >= 3 ? parts[2] : '' , ); } // Function to convert the string // into fraction toFraction() { const a = GFG.tenpow( this .nonRepeating.length); const i = parseInt( this .integer + this .nonRepeating); // If there is no repeating part, then // form a new fraction of the form i/a if ( this .repeating.length === 0) { return new Fraction(i, a); } else { // Otherwise const b = GFG.tenpow( this .nonRepeating.length + this .repeating.length); const j = parseInt( this .integer + this .nonRepeating + this .repeating); return new Fraction(j - i, b - a); } } toString() { return `${ this .integer}.${ this .nonRepeating}(${ this .repeating})`; } } // Fraction class having numerator as p // and denominator as q class Fraction { // Constructor function to initialize // the object of the class constructor(p, q) { this .p = p; this .q = q; } toString() { return `${ this .p}/${ this .q}`; } } GFG.main(); // Contributed by adityasha4x71 |
YES
Time Complexity: O(N), where N is the maximum length of S and T Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!