Sunday, November 17, 2024
Google search engine
HomeData Modelling & AICheck if two given Rational Numbers are equal or not

Check if two given Rational Numbers are equal or not

Given two strings S and T representing non-negative rational numbers, the task is to check if the values of S and T are equal or not. If found to be true, then print “YES”. Otherwise, print “NO”.

Note: Any rational number can be represented in one of the following three ways:

  • <IntegerPart> (e.g. 0, 12, 123)
  • <IntegerPart><.><NonRepeatingPart> (e.g. 0.5, 1., 2.12, 2.0001)
  • <IntegerPart><.><NonRepeatingPart><(><RepeatingPart><)> (e.g. 0.1(6), 0.9(9), 0.00(1212))

Examples:

Input: S = “0.(52)”, T = “0.5(25)”
Output: YES
Explanation: The rational number “0.(52)” can be represented as 0.52525252… The rational number “0.5(25)” can be represented as 0.525252525…. Therefore, the required output is “YES”.

Input: S = “0.9(9)”, T = “1.” Output: YES Explanation: The rational number “0.9(9)” can be represented as 0.999999999…, it is equal to 1. The rational number “1.” can be represented as the number 1. Therefore, the required output is “YES”.

Approach: The idea is to convert the rational numbers into fractions and then check if fractions of both the rational numbers are equal or not. If found to be true, then print “YES”. Otherwise, print “NO”. Following are the observations:

The repeating portion of a decimal expansion is conventionally denoted within a pair of round brackets.
For example: 1 / 6 = 0.16666666… = 0.1(6) = 0.1666(6) = 0.166(66) Both 0.1(6) or 0.1666(6) or 0.166(66) are correct representations of 1 / 6.

Any rational numbers can be converted into fractions based on the following observations:

Let x = 0.5(25) —> (1) Integer part = 0, Non-repeating part = 5, Repeating part = 25 Multiply both sides of equation (1) by 10 raised to the power of length of non-repeating part, i.e. 10 * x = 5.(25) —> (2) Multiply both sides of equation (1) by 10 raised to the power of (length of non-repeating part + length of repeating part), 1000 * x = 525.(25) —> (3) Subtract equation (2) from equation (3)
1000 * x – 10 * x = 525.(25)-5.(25)
990 * x = 520
? x = 520 / 990

Follow the steps below to solve the problem:

Below is the implementation of the above approach:

C++




#include <iostream>
#include <string>
#include <vector>
 
using namespace std;
 
class Fraction {
public:
    long long p, q;
 
    // Constructor function to initialize the object of the class
    Fraction(long long p, long long q)
        : p(p), q(q) {}
 
    string ToString() {
        return to_string(p) + "/" + to_string(q);
    }
};
 
class Rational {
private:
    string integer, nonRepeating, repeating;
 
    // Constructor function to initialize the object of the class
    Rational(string integer, string nonRepeating, string repeating)
        : integer(integer), nonRepeating(nonRepeating), repeating(repeating) {}
 
public:
    // Function to split the string into integer, repeating & non-repeating part
    static Rational Parse(string s) {
        // Split s into parts
        vector<string> parts;
        size_t startPos = 0;
        size_t endPos = 0;
 
        while ((endPos = s.find_first_of(".()]", startPos)) != string::npos) {
            parts.push_back(s.substr(startPos, endPos - startPos));
            startPos = endPos + 1;
        }
 
        if (startPos < s.length()) {
            parts.push_back(s.substr(startPos, s.length() - startPos));
        }
 
        return Rational(
            parts.size() >= 1 ? parts[0] : "",
            parts.size() >= 2 ? parts[1] : "",
            parts.size() >= 3 ? parts[2] : "");
    }
 
    // Function to convert the string into fraction
    Fraction ToFraction() {
        const long long a = TenPow(nonRepeating.length());
        const long long i = stoll(integer + nonRepeating);
 
        // If there is no repeating part, then form a new fraction of the form i/a
        if (repeating.length() == 0) {
            return Fraction(i, a);
        } else {
            // Otherwise
            const long long b = TenPow(nonRepeating.length() + repeating.length());
            const long long j = stoll(integer + nonRepeating + repeating);
            return Fraction(j - i, b - a);
        }
    }
 
    string ToString() {
        return integer + "." + nonRepeating + "(" + repeating + ")";
    }
 
    static long long TenPow(int x) {
        if (x < 0) {
            throw invalid_argument("x must be non-negative");
        }
 
        long long r = 1;
        while (--x >= 0) {
            r *= 10;
        }
        return r;
    }
};
 
class GFG {
public:
    // Function to check if the string S and T are equal or not
    static bool IsRationalEqual(string s, string t) {
        // Stores the fractional part of s
        const Fraction f1 = Rational::Parse(s).ToFraction();
 
        // Stores the fractional part of t
        const Fraction f2 = Rational::Parse(t).ToFraction();
 
        // If the condition satisfies, return true; otherwise return false
        return (f1.p * f2.q == f2.p * f1.q);
    }
 
    // Driver Code
    static void Main() {
        // Given S and T
        const string S = "0.(52)";
        const string T = "0.5(25)";
 
        // Function Call
        if (IsRationalEqual(S, T)) {
            cout << "YES" << endl;
        } else {
            cout << "NO" << endl;
        }
    }
};
 
int main() {
    GFG::Main();
    return 0;
}


Java




// Java program to implement
// the above approach
import java.io.*;
import java.util.*;
 
class GFG {
 
    // Function to check if the string S and T
    // are equal or not
    public static boolean isRationalEqual(String s,
                                          String t)
    {
 
        // Stores the fractional part of s
        Fraction f1 = Rational.parse(s).toFraction();
 
        // Stores the fractional part of t
        Fraction f2 = Rational.parse(t).toFraction();
 
        // If the condition satisfies, returns true
        // otherwise return false
        return f1.p * f2.q == f2.p * f1.q;
    }
 
    // Rational class having integer, non-repeating
    // and repeating part of the number
    public static class Rational {
        private final String integer, nonRepeating,
            repeating;
 
        // Constructor function to initialize
        // the object of the class
        private Rational(String integer,
                         String nonRepeating,
                         String repeating)
        {
 
            // Stores integer part
            this.integer = integer;
 
            // Stores non repeating part
            this.nonRepeating = nonRepeating;
 
            // Stores repeating part
            this.repeating = repeating;
        }
 
        // Function to split the string into
        // integer, repeating & non-repeating part
        public static Rational parse(String s)
        {
 
            // Split s into parts
            String[] parts = s.split("[.()]");
 
            return new Rational(
                parts.length >= 1 ? parts[0] : "",
                parts.length >= 2 ? parts[1] : "",
                parts.length >= 3 ? parts[2] : "");
        }
 
        // Function to convert the string
        // into fraction
        public Fraction toFraction()
        {
 
            long a = tenpow(nonRepeating.length());
            long i = Long.parseLong(integer + nonRepeating);
 
            // If there is no repeating part, then
            // form a new fraction of the form i/a
            if (repeating.length() == 0) {
                return new Fraction(i, a);
            }
 
            // Otherwise
            else {
                long b = tenpow(nonRepeating.length()
                                + repeating.length());
 
                long j = Long.parseLong(
                    integer + nonRepeating + repeating);
 
                // Form the new Fraction and return
                return new Fraction(j - i, b - a);
            }
        }
 
        public String toString()
        {
            return String.format("%s.%s(%s)", integer,
                                 nonRepeating, repeating);
        }
    }
 
    // Fraction class having numerator as p
    // and denominator as q
    public static class Fraction {
        private final long p, q;
 
        // Constructor function to initialize
        // the object of the class
        private Fraction(long p, long q)
        {
            this.p = p;
            this.q = q;
        }
 
        public String toString()
        {
            return String.format("%d/%d", p, q);
        }
    }
 
    // Function to find 10 raised
    // to power of x
    public static long tenpow(int x)
    {
        assert x >= 0;
        long r = 1;
        while (--x >= 0) {
            r *= 10;
        }
        return r;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
 
        // Given S and T
        String S = "0.(52)", T = "0.5(25)";
 
        // Function Call
        if (isRationalEqual(S, T)) {
            System.out.println("YES");
        }
        else {
 
            System.out.println("NO");
        }
 
        // Print result
    }
}


Python3




import re
 
 
class GFG:
    # Function to check if the string S and T are equal or not
    @staticmethod
    def isRationalEqual(s, t):
        # Stores the fractional part of s
        f1 = Rational.parse(s).toFraction()
 
        # Stores the fractional part of t
        f2 = Rational.parse(t).toFraction()
 
        # If the condition satisfies, returns true
        # otherwise return false
        return f1.p * f2.q == f2.p * f1.q
 
    @staticmethod
    def tenpow(x):
        if x < 0:
            return None
        r = 1
        while x >= 0:
            r *= 10
            x -= 1
        return r
 
    # Driver Code
    @staticmethod
    def main():
        # Given S and T
        S = '0.(52)'
        T = '0.5(25)'
 
        # Function Call
        if GFG.isRationalEqual(S, T):
            print('YES')
        else:
            print('NO')
 
# Rational class having integer, non-repeating
# and repeating part of the number
 
 
class Rational:
    # Constructor function to initialize
    # the object of the class
    def __init__(self, integer, nonRepeating, repeating):
        self.integer = integer
        self.nonRepeating = nonRepeating
        self.repeating = repeating
 
    # Function to split the string into
    # integer, repeating & non-repeating part
    @staticmethod
    def parse(s):
        # Split s into parts
        parts = re.split(r'[.()]', s)
        return Rational(
            parts[0] if len(parts) >= 1 else '',
            parts[1] if len(parts) >= 2 else '',
            parts[2] if len(parts) >= 3 else '',
        )
 
    # Function to convert the string into fraction
    def toFraction(self):
        a = GFG.tenpow(len(self.nonRepeating))
        i = int(self.integer + self.nonRepeating)
 
        # If there is no repeating part, then
        # form a new fraction of the form i/a
        if len(self.repeating) == 0:
            return Fraction(i, a)
        else:
            # Otherwise
            b = GFG.tenpow(len(self.nonRepeating) + len(self.repeating))
            j = int(self.integer + self.nonRepeating + self.repeating)
            return Fraction(j - i, b - a)
 
    def __str__(self):
        return f'{self.integer}.{self.nonRepeating}({self.repeating})'
 
# Fraction class having numerator as p
# and denominator as q
 
 
class Fraction:
    # Constructor function to initialize
    # the object of the class
    def __init__(self, p, q):
        self.p = p
        self.q = q
 
    def __str__(self):
        return f'{self.p}/{self.q}'
 
 
GFG.main()


C#




using System;
 
class GFG
{
    // Function to check if the string S and T
    // are equal or not
    public static bool IsRationalEqual(string s, string t)
    {
        // Stores the fractional part of s
        Fraction f1 = Rational.Parse(s).ToFraction();
 
        // Stores the fractional part of t
        Fraction f2 = Rational.Parse(t).ToFraction();
 
        // If the condition satisfies, returns true
        // otherwise return false
        return f1.p * f2.q == f2.p * f1.q;
    }
 
    // Rational class having integer, non-repeating
    // and repeating part of the number
    public class Rational
    {
        private readonly string integer, nonRepeating, repeating;
 
        // Constructor function to initialize
        // the object of the class
        private Rational(string integer, string nonRepeating, string repeating)
        {
            // Stores integer part
            this.integer = integer;
 
            // Stores non-repeating part
            this.nonRepeating = nonRepeating;
 
            // Stores repeating part
            this.repeating = repeating;
        }
 
        // Function to split the string into
        // integer, repeating & non-repeating part
        public static Rational Parse(string s)
        {
            // Split s into parts
            string[] parts = s.Split(new char[] { '.', '(', ')' });
 
            return new Rational(
                parts.Length >= 1 ? parts[0] : "",
                parts.Length >= 2 ? parts[1] : "",
                parts.Length >= 3 ? parts[2] : "");
        }
 
        // Function to convert the string
        // into fraction
        public Fraction ToFraction()
        {
            long a = TenPow(nonRepeating.Length);
            long i = long.Parse(integer + nonRepeating);
 
            // If there is no repeating part, then
            // form a new fraction of the form i/a
            if (repeating.Length == 0)
            {
                return new Fraction(i, a);
            }
            // Otherwise
            else
            {
                long b = TenPow(nonRepeating.Length + repeating.Length);
 
                long j = long.Parse(integer + nonRepeating + repeating);
 
                // Form the new Fraction and return
                return new Fraction(j - i, b - a);
            }
        }
 
        public override string ToString()
        {
            return $"{integer}.{nonRepeating}({repeating})";
        }
    }
 
    // Fraction class having numerator as p
    // and denominator as q
    public class Fraction
    {
        public long p, q;
 
        // Constructor function to initialize
        // the object of the class
        public Fraction(long p, long q)
        {
            this.p = p;
            this.q = q;
        }
 
        public override string ToString()
        {
            return $"{p}/{q}";
        }
    }
 
    // Function to find 10 raised
    // to power of x
    public static long TenPow(int x)
    {
        if (x < 0)
        {
            throw new ArgumentException("x must be non-negative");
        }
 
        long r = 1;
        while (--x >= 0)
        {
            r *= 10;
        }
        return r;
    }
 
    // Driver Code
    public static void Main(string[] args)
    {
        // Given S and T
        string S = "0.(52)", T = "0.5(25)";
 
        // Function Call
        if (IsRationalEqual(S, T))
        {
            Console.WriteLine("YES");
        }
        else
        {
            Console.WriteLine("NO");
        }
    }
}
 
// This code is contributed by Dwaipayan Bandyopadhyay


Javascript




// JavaScript program to implement
// the above approach
class GFG {
 
    // Function to check if the string S and T
    // are equal or not
    static isRationalEqual(s, t) {
        // Stores the fractional part of s
        const f1 = Rational.parse(s).toFraction();
 
        // Stores the fractional part of t
        const f2 = Rational.parse(t).toFraction();
 
        // If the condition satisfies, returns true
        // otherwise return false
        return f1.p * f2.q === f2.p * f1.q;
    }
 
    static tenpow(x) {
        if (x < 0) return undefined;
        let r = 1;
        while (--x >= 0) {
            r *= 10;
        }
        return r;
    }
 
    // Driver Code
    static main() {
        // Given S and T
        const S = '0.(52)';
        const T = '0.5(25)';
 
        // Function Call
        if (GFG.isRationalEqual(S, T)) {
            console.log('YES');
        } else {
            console.log('NO');
        }
    }
}
 
// Rational class having integer, non-repeating
// and repeating part of the number
class Rational {
    // Constructor function to initialize
    // the object of the class
    constructor(integer, nonRepeating, repeating) {
        this.integer = integer;
        this.nonRepeating = nonRepeating;
        this.repeating = repeating;
    }
 
    // Function to split the string into
    // integer, repeating & non-repeating part
    static parse(s) {
        // Split s into parts
        const parts = s.split(/[.()]/);
        return new Rational(
            parts.length >= 1 ? parts[0] : '',
            parts.length >= 2 ? parts[1] : '',
            parts.length >= 3 ? parts[2] : '',
        );
    }
 
    // Function to convert the string
    // into fraction
    toFraction() {
        const a = GFG.tenpow(this.nonRepeating.length);
        const i = parseInt(this.integer + this.nonRepeating);
 
        // If there is no repeating part, then
        // form a new fraction of the form i/a
        if (this.repeating.length === 0) {
            return new Fraction(i, a);
        } else {
            // Otherwise
            const b = GFG.tenpow(this.nonRepeating.length + this.repeating.length);
            const j = parseInt(this.integer + this.nonRepeating + this.repeating);
            return new Fraction(j - i, b - a);
        }
    }
 
    toString() {
        return `${this.integer}.${this.nonRepeating}(${this.repeating})`;
    }
}
 
// Fraction class having numerator as p
// and denominator as q
class Fraction {
    // Constructor function to initialize
    // the object of the class
    constructor(p, q) {
        this.p = p;
        this.q = q;
    }
 
    toString() {
        return `${this.p}/${this.q}`;
    }
}
 
GFG.main();
 
// Contributed by adityasha4x71


Output

YES




Time Complexity: O(N), where N is the maximum length of S and T Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments