Given an integer N where 1 ? N ? 105, the task is to find whether (N-1)! % N = N – 1 or not.
Examples:
Input: N = 3
Output: Yes
Explanation:
Here, n = 3 so (3 – 1)! = 2! = 2
=> 2 % 3 = 2 which is N – 1 itselfInput: N = 4
Output: No
Explanation:
Here, n = 4 so (4 – 1)! = 3! = 6
=> 6 % 3 = 0 which is not N – 1.
Naive approach: To solve the question mentioned above the naive method is to find (N – 1)! and check if (N – 1)! % N = N – 1 or not. But this approach will cause an overflow since 1 ? N ? 105
Efficient approach: To solve the above problem in an optimal way we will use Wilson’s theorem which states that a natural number p > 1 is a prime number if and only if
(p – 1) ! ? -1 mod p
or; (p – 1) ! ? (p-1) mod p
So, now we just have to check if N is a prime number(including 1) or not.
Below is the implementation of the above approach:
C++
// C++ implementation to check // the following expression for // an integer N is valid or not #include <bits/stdc++.h> using namespace std; // Function to check if a number // holds the condition // (N-1)! % N = N - 1 bool isPrime( int n) { // Corner cases if (n == 1) return true ; if (n <= 3) return true ; // Number divisible by 2 // or 3 are not prime if (n % 2 == 0 || n % 3 == 0) return false ; // Iterate from 5 and keep // checking for prime for ( int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false ; return true ; } // Function to check the // expression for the value N void checkExpression( int n) { if (isPrime(n)) cout << "Yes" ; else cout << "No" ; } // Driver Program int main() { int N = 3; checkExpression(N); return 0; } |
Java
// Java implementation to check // the following expression for // an integer N is valid or not class GFG{ // Function to check if a number // holds the condition // (N-1)! % N = N - 1 static boolean isPrime( int n) { // Corner cases if (n == 1 ) return true ; if (n <= 3 ) return true ; // Number divisible by 2 // or 3 are not prime if (n % 2 == 0 || n % 3 == 0 ) return false ; // Iterate from 5 and keep // checking for prime for ( int i = 5 ; i * i <= n; i = i + 6 ) if (n % i == 0 || n % (i + 2 ) == 0 ) return false ; return true ; } // Function to check the // expression for the value N static void checkExpression( int n) { if (isPrime(n)) System.out.println( "Yes" ); else System.out.println( "No" ); } // Driver code public static void main(String[] args) { int N = 3 ; checkExpression(N); } } // This code is contributed by shivanisinghss2110 |
Python3
# Python3 implementation to check # the following expression for # an integer N is valid or not # Function to check if a number # holds the condition # (N-1)! % N = N - 1 def isPrime(n): # Corner cases if (n = = 1 ): return True if (n < = 3 ): return True # Number divisible by 2 # or 3 are not prime if ((n % 2 = = 0 ) or (n % 3 = = 0 )): return False # Iterate from 5 and keep # checking for prime i = 5 while (i * i < = n): if ((n % i = = 0 ) or (n % (i + 2 ) = = 0 )): return False ; i + = 6 return true; # Function to check the # expression for the value N def checkExpression(n): if (isPrime(n)): print ( "Yes" ) else : print ( "No" ) # Driver code if __name__ = = '__main__' : N = 3 checkExpression(N) # This code is contributed by jana_sayantan |
C#
// C# implementation to check // the following expression for // an integer N is valid or not using System; class GFG{ // Function to check if a number // holds the condition // (N-1)! % N = N - 1 static bool isPrime( int n) { // Corner cases if (n == 1) return true ; if (n <= 3) return true ; // Number divisible by 2 // or 3 are not prime if (n % 2 == 0 || n % 3 == 0) return false ; // Iterate from 5 and keep // checking for prime for ( int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false ; return true ; } // Function to check the // expression for the value N static void checkExpression( int n) { if (isPrime(n)) Console.Write( "Yes" ); else Console.Write( "No" ); } // Driver code public static void Main() { int N = 3; checkExpression(N); } } // This code is contributed by Code_Mech |
Javascript
<script> // Javascript implementation to check // the following expression for // an integer N is valid or not // Function to check if a number // holds the condition // (N-1)! % N = N - 1 function isPrime(n) { // Corner cases if (n == 1) return true ; if (n <= 3) return true ; // Number divisible by 2 // or 3 are not prime if (n % 2 == 0 || n % 3 == 0) return false ; // Iterate from 5 and keep // checking for prime for (let i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false ; return true ; } // Function to check the // expression for the value N function checkExpression(n) { if (isPrime(n)) document.write( "Yes" ); else document.write( "No" ); } let N = 3; checkExpression(N); </script> |
Yes
Time Complexity: O(sqrt(N)), as the loop will run only till (N1/2)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!