Sunday, November 17, 2024
Google search engine
HomeData Modelling & AICheck if the remainder of N-1 factorial when divided by N is...

Check if the remainder of N-1 factorial when divided by N is N-1 or not

Given an integer N where 1 ? N ? 105, the task is to find whether (N-1)! % N = N – 1 or not.
Examples:

Input: N = 3 
Output: Yes 
Explanation: 
Here, n = 3 so (3 – 1)! = 2! = 2 
=> 2 % 3 = 2 which is N – 1 itself

Input: N = 4 
Output: No 
Explanation: 
Here, n = 4 so (4 – 1)! = 3! = 6 
=> 6 % 3 = 0 which is not N – 1.

Naive approach: To solve the question mentioned above the naive method is to find (N – 1)! and check if (N – 1)! % N = N – 1 or not. But this approach will cause an overflow since 1 ? N ? 105

Efficient approach: To solve the above problem in an optimal way we will use Wilson’s theorem which states that a natural number p > 1 is a prime number if and only if

(p – 1) ! ? -1 mod p 
or; (p – 1) ! ? (p-1) mod p

So, now we just have to check if N is a prime number(including 1) or not.

Below is the implementation of the above approach:

C++




// C++ implementation to check
// the following expression for
// an integer N is valid or not
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if a number
// holds the condition
// (N-1)! % N = N - 1
bool isPrime(int n)
{
    // Corner cases
    if (n == 1)
        return true;
    if (n <= 3)
        return true;
 
    // Number divisible by 2
    // or 3 are not prime
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    // Iterate from 5 and keep
    // checking for prime
    for (int i = 5; i * i <= n; i = i + 6)
 
        if (n % i == 0
            || n % (i + 2) == 0)
            return false;
 
    return true;
}
 
// Function to check the
// expression for the value N
void checkExpression(int n)
{
    if (isPrime(n))
        cout << "Yes";
    else
        cout << "No";
}
 
// Driver Program
int main()
{
    int N = 3;
    checkExpression(N);
    return 0;
}


Java




// Java implementation to check
// the following expression for
// an integer N is valid or not
class GFG{
 
// Function to check if a number
// holds the condition
// (N-1)! % N = N - 1
static boolean isPrime(int n)
{
     
    // Corner cases
    if (n == 1)
        return true;
    if (n <= 3)
        return true;
 
    // Number divisible by 2
    // or 3 are not prime
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    // Iterate from 5 and keep
    // checking for prime
    for(int i = 5; i * i <= n; i = i + 6)
       if (n % i == 0 || n % (i + 2) == 0)
           return false;
            
    return true;
}
 
// Function to check the
// expression for the value N
static void checkExpression(int n)
{
    if (isPrime(n))
        System.out.println("Yes");
    else
        System.out.println("No");
}
 
// Driver code
public static void main(String[] args)
{
    int N = 3;
     
    checkExpression(N);
}
}
 
// This code is contributed by shivanisinghss2110


Python3




# Python3 implementation to check
# the following expression for
# an integer N is valid or not
 
# Function to check if a number
# holds the condition
# (N-1)! % N = N - 1
def isPrime(n):
     
    # Corner cases
    if (n == 1):
        return True
    if (n <= 3):
        return True
 
    # Number divisible by 2
    # or 3 are not prime
    if ((n % 2 == 0) or (n % 3 == 0)):
        return False
 
    # Iterate from 5 and keep
    # checking for prime
    i = 5
    while (i * i <= n):
        if ((n % i == 0) or
            (n % (i + 2) == 0)):
            return False;
            i += 6
 
    return true;
 
# Function to check the
# expression for the value N
def checkExpression(n):
     
    if (isPrime(n)):
        print("Yes")
    else:
        print("No")
 
# Driver code
if __name__ == '__main__':
     
    N = 3
     
    checkExpression(N)
 
# This code is contributed by jana_sayantan


C#




// C# implementation to check
// the following expression for
// an integer N is valid or not
using System;
class GFG{
 
// Function to check if a number
// holds the condition
// (N-1)! % N = N - 1
static bool isPrime(int n)
{
     
    // Corner cases
    if (n == 1)
        return true;
    if (n <= 3)
        return true;
 
    // Number divisible by 2
    // or 3 are not prime
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    // Iterate from 5 and keep
    // checking for prime
    for(int i = 5; i * i <= n; i = i + 6)
       if (n % i == 0 || n % (i + 2) == 0)
           return false;
             
    return true;
}
 
// Function to check the
// expression for the value N
static void checkExpression(int n)
{
    if (isPrime(n))
        Console.Write("Yes");
    else
        Console.Write("No");
}
 
// Driver code
public static void Main()
{
    int N = 3;
     
    checkExpression(N);
}
}
 
// This code is contributed by Code_Mech


Javascript




<script>
 
    // Javascript implementation to check
    // the following expression for
    // an integer N is valid or not
 
    // Function to check if a number
    // holds the condition
    // (N-1)! % N = N - 1
    function isPrime(n)
    {
        // Corner cases
        if (n == 1)
            return true;
        if (n <= 3)
            return true;
 
        // Number divisible by 2
        // or 3 are not prime
        if (n % 2 == 0 || n % 3 == 0)
            return false;
 
        // Iterate from 5 and keep
        // checking for prime
        for (let i = 5; i * i <= n; i = i + 6)
 
            if (n % i == 0
                || n % (i + 2) == 0)
                return false;
 
        return true;
    }
 
    // Function to check the
    // expression for the value N
    function checkExpression(n)
    {
        if (isPrime(n))
            document.write("Yes");
        else
            document.write("No");
    }
     
    let N = 3;
    checkExpression(N);
 
</script>


Output: 

Yes

Time Complexity: O(sqrt(N)), as the loop will run only till (N1/2)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments