Saturday, November 16, 2024
Google search engine
HomeData Modelling & AICheck if each row and column of N*N Grid contains all numbers...

Check if each row and column of N*N Grid contains all numbers from 1 to N

Given a square matrix arr[][] of size N * N, the task is to check whether each row and column of a matrix contains all the numbers from 1 to N or not.

Examples:

Input: arr[][] = { {1, 2, 3}, 
                          {3, 1, 2}, 
                          {2, 3, 1} }
Output: true
Explanation: Every row and column contains number 1 to N, i.e 1 to 3

Input: arr[][] = { {1, 1, 1}, 
                           {1, 2, 3}, 
                           {1, 2, 3} }
Output: false

 

Approach: The task can be solved using a set data structure (set stores unique elements). Iterate over the matrix, store the elements of each row and each column inside a set, and check whether the size of the set is equal to N or not.

Below is the implementation of the above approach.

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check whether each row and
// column has all the numbers from 1 to N
int check(vector<vector<int> >& arr)
{
    int N = arr.size();
    set<int> row, col;
    int flag = 1;
    for (int i = 0; i < N; i++) {
        row.clear();
        col.clear();
        for (int j = 0; j < N; j++) {
 
            // Inserting the elements
            // to row set and column set
            col.insert(arr[j][i]);
            row.insert(arr[i][j]);
        }
 
        // Checking the size of each
        // row and column and if it is
        // equal or not
        if (col.size() != N
            || row.size() != N)
            flag = 0;
    }
    return flag;
}
 
// Driver Code
int main()
{
    int N = 3;
    vector<vector<int> > arr{ { 1, 2, 3 },
                              { 3, 1, 2 },
                              { 2, 3, 1 } };
    cout << (!check(arr) ? "false" : "true");
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
import java.lang.*;
import java.util.*;
 
class GFG {
 
  // Function to check whether each row and
  // column has all the numbers from 1 to N
  static int check(int[][] arr)
  {
    int N = arr.length;
    Set<Integer> row = new HashSet<Integer>();
    Set<Integer> col = new HashSet<Integer>();
 
    int flag = 1;
    for (int i = 0; i < N; i++) {
      row.clear();
      col.clear();
      for (int j = 0; j < N; j++) {
 
        // Inserting the elements
        // to row set and column set
        col.add(arr[j][i]);
        row.add(arr[i][j]);
      }
 
      // Checking the size of each
      // row and column and if it is
      // equal or not
      if (col.size() != N
          || row.size() != N)
        flag = 0;
    }
    return flag;
  }
 
  // Driver Code
  public static void main (String[] args) {
    int N = 3;
    int[][] arr = { { 1, 2, 3 },
                   { 3, 1, 2 },
                   { 2, 3, 1 } };
 
    if(check(arr) == 1){
      System.out.println("true");
    }
    else{
      System.out.println("false");
    }
  }
}
 
// This code is contributed by hrithikgarg03188.


Python3




# Python program for the above approach
 
# Function to check whether each row and
# column has all the numbers from 1 to N
def check (arr):
    N = len(arr)
    row = set()
    col = set();
    flag = 1;
    for i in range(N):
        row = set()
        col = set();
        for j in range(N):
 
            # Inserting the elements
            # to row set and column set
            col.add(arr[j][i]);
            row.add(arr[i][j]);
         
        # Checking the size of each
        # row and column and if it is
        # equal or not
        if (len(col) != N or len(row) != N):
            flag = 0;
     
    return flag;
 
# Driver Code
N = 3;
arr = [[1, 2, 3], [3, 1, 2], [2, 3, 1]];
print("false") if not check(arr) else print("true");
 
# This code is contributed by Saurabh Jaiswal


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
   
public class GFG{
 
  // Function to check whether each row and
  // column has all the numbers from 1 to N
  static int check(int[,] arr)
  {
    int N = 3;
    HashSet<int> row = new HashSet<int>();
    HashSet<int> col = new HashSet<int>();
 
    int flag = 1;
    for (int i = 0; i < N; i++) {
      row.Clear();
      col.Clear();
      for (int j = 0; j < N; j++) {
 
        // Inserting the elements
        // to row set and column set
        col.Add(arr[j,i]);
        row.Add(arr[i,j]);
      }
 
      // Checking the size of each
      // row and column and if it is
      // equal or not
      if (col.Count != N
          || row.Count != N)
        flag = 0;
    }
    return flag;
  }
 
  // Driver Code
  static public void Main (){
    //int N = 3;
    int[,] arr = { { 1, 2, 3 },
                   { 3, 1, 2 },
                   { 2, 3, 1 } };
 
    if(check(arr) == 1){
      Console.WriteLine("true");
    }
    else{
      Console.WriteLine("false");
    }
  }
}
 
// This code is contributed by Shubham Singh


Javascript




<script>
    // JavaScript program for the above approach
 
    // Function to check whether each row and
    // column has all the numbers from 1 to N
    const check = (arr) => {
        let N = arr.length;
        let row = new Set(), col = new Set();
        let flag = 1;
        for (let i = 0; i < N; i++) {
            row.clear();
            col.clear();
            for (let j = 0; j < N; j++) {
 
                // Inserting the elements
                // to row set and column set
                col.add(arr[j][i]);
                row.add(arr[i][j]);
            }
 
            // Checking the size of each
            // row and column and if it is
            // equal or not
            if (col.size != N
                || row.size != N)
                flag = 0;
        }
        return flag;
    }
 
    // Driver Code
 
    let N = 3;
    let arr = [[1, 2, 3], [3, 1, 2], [2, 3, 1]];
    (!check(arr) ? document.write("false") : document.write("true"));
 
// This code is contributed by rakeshsahni
 
</script>


 
 

Output

true

 

Time Complexity: O(N2 * logN)
Auxiliary Space: O(N)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments