Sunday, November 17, 2024
Google search engine
HomeData Modelling & AICheck if an integer can be expressed as a sum of two...

Check if an integer can be expressed as a sum of two semi-primes

Given a positive integer N, check if it can be expressed as a sum of two semi-primes or not.
Semi-primes A number is said to be a semi-prime if it can be expressed as product of two primes number ( not necessarily distinct ).
Semi-primes in the range 1 -100 are: 
 

4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 35, 38, 39, 46, 49, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95. 
 

Examples: 
 

Input : N = 30
Output: YES
Explanation: 30 can be expressed as '15 + 15' 
15 is semi-primes as 15 is a product of two primes 3 and 5.

Input : N = 45
Output : YES
Explanation: 45 can be expressed as '35 + 10'
35 and 10 are also  semi-primes as it can a be expressed 
as product of two primes:
       35 = 5 * 7
       10 = 2 * 5   

 

Prerequisite
 

A Simple Solution is to traverse from i=1 to N     and check if i and N-i are semi-primes or not. If yes, print i and n-i.
An Efficient Solution is to pre-compute semi-primes in an array up to the given range and then traverse the semi-prime array and check if n-arr[i] is semi-prime or not. As, arr[i] is already a semi-prime if n-arr[i] is also a semi-prime, then n can be expressed as sum of two semi-primes.
Below is the implementation of above approach: 
 

C++




// CPP Code to check if an integer
// can be expressed as sum of
// two semi-primes
 
#include <bits/stdc++.h>
using namespace std;
#define MAX 1000000
 
vector<int> arr;
bool sprime[MAX];
 
// Utility function to compute
// semi-primes in a range
void computeSemiPrime()
{
    memset(sprime, false, sizeof(sprime));
 
    for (int i = 2; i < MAX; i++) {
 
        int cnt = 0;
        int num = i;
        for (int j = 2; cnt < 2 && j * j <= num; ++j) {
            while (num % j == 0) {
                num /= j, ++cnt; // Increment count
                // of prime numbers
            }
        }
 
        // If number is greater than 1, add it to
        // the count variable as it indicates the
        // number remain is prime number
 
        if (num > 1)
            ++cnt;
 
        // if count is equal to '2' then
        // number is semi-prime
 
        if (cnt == 2) {
 
            sprime[i] = true;
            arr.push_back(i);
        }
    }
}
 
// Utility function to check
// if a number sum of two
// semi-primes
bool checkSemiPrime(int n)
{
    int i = 0;
 
    while (arr[i] <= n / 2) {
 
        // arr[i] is already a semi-prime
        // if n-arr[i] is also a semi-prime
        // then we a number can be expressed as
        // sum of two semi-primes
 
        if (sprime[n - arr[i]]) {
            return true;
        }
 
        i++;
    }
 
    return false;
}
 
// Driver code
int main()
{
    computeSemiPrime();
 
    int n = 30;
    if (checkSemiPrime(n))
        cout << "YES";
    else
        cout << "NO";
 
    return 0;
}


Java




// Java Code to check if an integer
// can be expressed as sum of
// two semi-primes
 
import java.util.*;
 
class GFG {
 
    static final int MAX = 1000000;
    static Vector<Integer> arr = new Vector<>();
    static boolean[] sprime = new boolean[MAX];
 
    // Utility function to compute
    // semi-primes in a range
    static void computeSemiPrime()
    {
 
        for (int i = 0; i < MAX; i++)
            sprime[i] = false;
 
        for (int i = 2; i < MAX; i++) {
 
            int cnt = 0;
            int num = i;
            for (int j = 2; cnt < 2 && j * j <= num; ++j) {
                while (num % j == 0) {
                    num /= j;
                    ++cnt;
                    // Increment count
                    // of prime numbers
                }
            }
 
            // If number is greater than 1, add it to
            // the count variable as it indicates the
            // number remain is prime number
 
            if (num > 1)
                ++cnt;
 
            // if count is equal to '2' then
            // number is semi-prime
 
            if (cnt == 2) {
 
                sprime[i] = true;
                arr.add(i);
            }
        }
    }
 
    // Utility function to check
    // if a number is sum of two
    // semi-primes
    static boolean checkSemiPrime(int n)
    {
        int i = 0;
 
        while (arr.get(i) <= n / 2) {
 
            // arr[i] is already a semi-prime
            // if n-arr[i] is also a semi-prime
            // then  a number can be expressed as
            // sum of two semi-primes
 
            if (sprime[n - arr.get(i)]) {
                return true;
            }
 
            i++;
        }
 
        return false;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        computeSemiPrime();
 
        int n = 30;
        if (checkSemiPrime(n))
            System.out.println("YES");
        else
            System.out.println("NO");
    }
}


Python3




# Python3 Code to check if an integer can
# be expressed as sum of two semi-primes
MAX = 10000
 
arr = []
sprime = [False] * (MAX)
 
# Utility function to compute
# semi-primes in a range
def computeSemiPrime():
 
    for i in range(2, MAX):
 
        cnt, num, j = 0, i, 2
        while cnt < 2 and j * j <= num:
            while num % j == 0:
                num /= j
                 
                # Increment count of prime numbers
                cnt += 1
                 
            j += 1
 
        # If number is greater than 1, add it
        # to the count variable as it indicates
        # the number remain is prime number
        if num > 1:
            cnt += 1
 
        # if count is equal to '2' then
        # number is semi-prime
        if cnt == 2:
 
            sprime[i] = True
            arr.append(i)
 
# Utility function to check
# if a number sum of two
# semi-primes
def checkSemiPrime(n):
 
    i = 0
    while arr[i] <= n // 2:
 
        # arr[i] is already a semi-prime
        # if n-arr[i] is also a semi-prime
        # then a number can be expressed as
        # sum of two semi-primes
        if sprime[n - arr[i]] == True:
            return True
 
        i += 1
     
    return False
 
# Driver code
if __name__ == "__main__":
 
    computeSemiPrime()
 
    n = 30
    if checkSemiPrime(n) == True:
        print("YES")
    else:
        print("NO")
 
# This code is contributed by
# Rituraj Jain


C#




// C# Code to check if an integer
// can be expressed as sum of
// two semi-primes
using System.Collections.Generic;
 
class GFG
{
 
static int MAX = 1000000;
static List<int> arr = new List<int>();
static bool[] sprime = new bool[MAX];
 
// Utility function to compute
// semi-primes in a range
static void computeSemiPrime()
{
 
    for (int i = 0; i < MAX; i++)
        sprime[i] = false;
 
    for (int i = 2; i < MAX; i++)
    {
 
        int cnt = 0;
        int num = i;
        for (int j = 2; cnt < 2 && j * j <= num; ++j)
        {
            while (num % j == 0)
            {
                num /= j;
                ++cnt;
                 
                // Increment count
                // of prime numbers
            }
        }
 
        // If number is greater than 1, add it to
        // the count variable as it indicates the
        // number remain is prime number
        if (num > 1)
            ++cnt;
 
        // if count is equal to '2' then
        // number is semi-prime
 
        if (cnt == 2)
        {
            sprime[i] = true;
            arr.Add(i);
        }
    }
}
 
// Utility function to check
// if a number is sum of two
// semi-primes
static bool checkSemiPrime(int n)
{
    int i = 0;
 
    while (arr[i] <= n / 2)
    {
 
        // arr[i] is already a semi-prime
        // if n-arr[i] is also a semi-prime
        // then a number can be expressed as
        // sum of two semi-primes
 
        if (sprime[n - arr[i]])
        {
            return true;
        }
 
        i++;
    }
 
    return false;
}
 
// Driver code
public static void Main()
{
    computeSemiPrime();
 
    int n = 30;
    if (checkSemiPrime(n))
        System.Console.WriteLine("YES");
    else
        System.Console.WriteLine("NO");
}
}
 
// This code is contributed by mits


Javascript




<script>
 
// Javascript Code to check if an integer
// can be expressed as sum of
// two semi-primes
 
var MAX = 1000000;
 
var arr = [];
var sprime = Array(MAX).fill(false);
 
// Utility function to compute
// semi-primes in a range
function computeSemiPrime()
{
 
    for (var i = 2; i < MAX; i++) {
 
        var cnt = 0;
        var num = i;
        for (var j = 2; cnt < 2 && j * j <= num; ++j) {
            while (num % j == 0) {
                num /= j, ++cnt; // Increment count
                // of prime numbers
            }
        }
 
        // If number is greater than 1, add it to
        // the count variable as it indicates the
        // number remain is prime number
 
        if (num > 1)
            ++cnt;
 
        // if count is equal to '2' then
        // number is semi-prime
 
        if (cnt == 2) {
 
            sprime[i] = true;
            arr.push(i);
        }
    }
}
 
// Utility function to check
// if a number sum of two
// semi-primes
function checkSemiPrime(n)
{
    var i = 0;
 
    while (arr[i] <= parseInt(n / 2)) {
 
        // arr[i] is already a semi-prime
        // if n-arr[i] is also a semi-prime
        // then we a number can be expressed as
        // sum of two semi-primes
 
        if (sprime[n - arr[i]]) {
            return true;
        }
 
        i++;
    }
 
    return false;
}
 
// Driver code
 
computeSemiPrime();
var n = 30;
if (checkSemiPrime(n))
    document.write( "YES");
else
    document.write( "NO");
 
// This code is contributed by itsok.
</script>


Output: 

YES

 

Time Complexity: O(MAX*log(log(MAX))) 

Auxiliary Space: O(MAX)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments