Monday, November 18, 2024
Google search engine
HomeData Modelling & AICheck if an Array is a permutation of numbers from 1 to...

Check if an Array is a permutation of numbers from 1 to N : Set 2

Given an array arr containing N positive integers, the task is to check if the given array arr represents a permutation or not.
 

A sequence of N integers is called a permutation if it contains all integers from 1 to N exactly once.

Examples: 
 

Input: arr[] = {1, 2, 5, 3, 2} 
Output: No 
Explanation: 
The given array contains 2 twice, and 4 is missing for the array to represent a permutation of length 5. 
Input: arr[] = {1, 2, 5, 3, 4} 
Output: Yes 
Explanation: 
The given array contains all integers from 1 to 5 exactly once. Hence, it represents a permutation of length 5. 
 

 

Naive Approach: in O(N2) Time 
This approach is mentioned here
Another Approach: in O(N) Time and O(N) Space 
This approach is mentioned here.
Efficient Approach: Using HashTable 
 

  1. Create a HashTable of N size to store the frequency count of each number from 1 to N
  2. Traverse through the given array and store the frequency of each number in the HashTable.
  3. Then traverse the HashTable and check if all the numbers from 1 to N have a frequency of 1 or not. 
  4. Print “Yes” if the above condition is True, Else “No”.

Below is the implementation of the above approach: 
 

CPP




// C++ program to decide if an array
// represents a permutation or not
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if an
// array represents a permutation or not
string permutation(int arr[], int N)
{
 
    int hash[N + 1] = { 0 };
 
    // Counting the frequency
    for (int i = 0; i < N; i++) {
        hash[arr[i]]++;
    }
 
    // Check if each frequency is 1 only
    for (int i = 1; i <= N; i++) {
        if (hash[i] != 1)
            return "No";
    }
 
    return "Yes";
}
 
// Driver code
int main()
{
    int arr[] = { 1, 1, 5, 5, 3 };
    int n = sizeof(arr) / sizeof(int);
    cout << permutation(arr, n) << endl;
 
    return 0;
}


Java




// Java program to decide if an array
// represents a permutation or not
class GFG{
  
// Function to check if an
// array represents a permutation or not
static String permutation(int arr[], int N)
{
  
    int []hash = new int[N + 1];
  
    // Counting the frequency
    for (int i = 0; i < N; i++) {
        hash[arr[i]]++;
    }
  
    // Check if each frequency is 1 only
    for (int i = 1; i <= N; i++) {
        if (hash[i] != 1)
            return "No";
    }
  
    return "Yes";
}
  
// Driver code
public static void main(String[] args)
{
    int arr[] = { 1, 1, 5, 5, 3 };
    int n = arr.length;
    System.out.print(permutation(arr, n) +"\n");
}
}
 
// This code is contributed by Princi Singh


Python3




# Python3 program to decide if an array
# represents a permutation or not
 
# Function to check if an
# array represents a permutation or not
def permutation(arr,  N) :
 
    hash = [0]*(N + 1);
 
    # Counting the frequency
    for i in range(N) :
        hash[arr[i]] += 1;
 
    # Check if each frequency is 1 only
    for i in range(1, N + 1) :
        if (hash[i] != 1) :
            return "No";
 
    return "Yes";
 
# Driver code
if __name__ == "__main__" :
 
    arr = [ 1, 1, 5, 5, 3 ];
    n = len(arr);
    print(permutation(arr, n));
 
    # This code is contributed by Yash_R


C#




// C# program to decide if an array
// represents a permutation or not
using System;
 
class GFG{
  
    // Function to check if an
    // array represents a permutation or not
    static string permutation(int []arr, int N)
    {
      
        int []hash = new int[N + 1];
      
        // Counting the frequency
        for (int i = 0; i < N; i++) {
            hash[arr[i]]++;
        }
      
        // Check if each frequency is 1 only
        for (int i = 1; i <= N; i++) {
            if (hash[i] != 1)
                return "No";
        }
      
        return "Yes";
    }
      
    // Driver code
    public static void Main(string[] args)
    {
        int []arr = { 1, 1, 5, 5, 3 };
        int n = arr.Length;
        Console.Write(permutation(arr, n) +"\n");
    }
}
 
// This code is contributed by Yash_R


Javascript




<script>
 
// JavaScript program to decide if an array
// represents a permutation or not
 
// Function to check if an
// array represents a permutation or not
function permutation(arr, N)
{
 
    var hash = Array(N+1).fill(0);
 
    // Counting the frequency
    for (var i = 0; i < N; i++) {
        hash[arr[i]]++;
    }
 
    // Check if each frequency is 1 only
    for (var i = 1; i <= N; i++) {
        if (hash[i] != 1)
            return "No";
    }
 
    return "Yes";
}
 
// Driver code
var arr = [1, 1, 5, 5, 3];
var n = arr.length;
document.write( permutation(arr, n));
 
</script>


Output: 

No

 

Time Complexity: O(N) 
Auxiliary Space Complexity: O(N)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments