Given an array arr[] consisting of N integers, where each array element represents the height of a building situated on the X co-ordinates, the task is to check if it is possible to select 3 buildings, such that the third selected building is taller than the first selected building and shorter than the second selected building.
Examples:
Input: arr[] = {4, 7, 11, 5, 13, 2}
Output: Yes
Explanation:
One possible way is to select the building at indices [0, 1, 3] with heights 4, 7 and 5 respectively.Input: arr[] = {11, 11, 12, 9}
Output: No
Approach: The given problem can be solved using the Stack data structure. Follow the steps below to solve the problem:
- If N is less than 3, then print “No“.
- Initialize an array, say preMin[], to store the prefix minimum array of array arr[].
- Traverse the array arr[] and update preMin[i] as preMin[i] = min(preMin[i-1], arr[i]).
- Now, initialize a Stack, say stack, to store the elements from the ending in ascending order.
- Traverse the array arr[] in reverse using a variable, say i, and perform the following steps:
- If arr[i] is greater than the preMin[i] then do the following:
- Iterate while the stack is not empty and the top element of the stack is less than preMin[i], then pop the top element of the stack in each iteration.
- If the stack is not empty and the top element of the stack is less than the arr[i], then print “Yes” and return.
- Otherwise, after the above step, push arr[i] into the stack.
- If arr[i] is greater than the preMin[i] then do the following:
- After completing the above steps, if none of the above cases satisfy, then print “No“.
Below is the implementation of the above approach:
C++
// C++ implementation of the above approach #include <bits/stdc++.h> using namespace std; // Function to check if it is possible // to select three buildings that // satisfy the given condition string recreationalSpot( int arr[], int N) { if (N < 3) { return "No" ; } // Stores prefix min array int preMin[N]; preMin[0] = arr[0]; // Iterate over the range [1, N-1] for ( int i = 1; i < N; i++) { preMin[i] = min(preMin[i - 1], arr[i]); } // Stores the element from the // ending in increasing order stack< int > stack; // Iterate until j is greater than // or equal to 0 for ( int j = N - 1; j >= 0; j--) { // If current array element is // greater than the prefix min // upto j if (arr[j] > preMin[j]) { // Iterate while stack is not // empty and top element is // less than or equal to preMin[j] while (!stack.empty() && stack.top() <= preMin[j]) { // Remove the top element stack.pop(); } // If stack is not empty and top // element of the stack is less // than the current element if (!stack.empty() && stack.top() < arr[j]) { return "Yes" ; } // Push the arr[j] in stack stack.push(arr[j]); } } // If none of the above case // satisfy then return "No" return "No" ; } // Driver code int main() { // Input int arr[] = { 4, 7, 11, 5, 13, 2 }; int size = sizeof (arr) / sizeof (arr[0]); cout << recreationalSpot(arr, size); } |
Java
// Java implementation of the above approach import java.io.*; import java.util.*; class GFG{ // Function to check if it is possible // to select three buildings that // satisfy the given condition static String recreationalSpot( int arr[], int N) { if (N < 3 ) { return "No" ; } // Stores prefix min array int preMin[] = new int [N]; preMin[ 0 ] = arr[ 0 ]; // Iterate over the range [1, N-1] for ( int i = 1 ; i < N; i++) { preMin[i] = Math.min(preMin[i - 1 ], arr[i]); } // Stores the element from the // ending in increasing order Stack<Integer> stack = new Stack<Integer>(); // Iterate until j is greater than // or equal to 0 for ( int j = N - 1 ; j >= 0 ; j--) { // If current array element is // greater than the prefix min // upto j if (arr[j] > preMin[j]) { // Iterate while stack is not // empty and top element is // less than or equal to preMin[j] while (stack.empty() == false && stack.peek() <= preMin[j]) { // Remove the top element stack.pop(); } // If stack is not empty and top // element of the stack is less // than the current element if (stack.empty() == false && stack.peek() < arr[j]) { return "Yes" ; } // Push the arr[j] in stack stack.push(arr[j]); } } // If none of the above case // satisfy then return "No" return "No" ; } // Driver code public static void main(String[] args) { // Input int arr[] = { 4 , 7 , 11 , 5 , 13 , 2 }; int size = arr.length; System.out.println(recreationalSpot(arr, size)); } } // This code is contributed by Dharanendra L V. |
Python3
# Python3 implementation of the above approach # Function to check if it is possible # to select three buildings that # satisfy the given condition def recreationalSpot(arr, N): if (N < 3 ): return "No" # Stores prefix min array preMin = [ 0 ] * N preMin[ 0 ] = arr[ 0 ] # Iterate over the range [1, N-1] for i in range ( 1 , N): preMin[i] = min (preMin[i - 1 ], arr[i]) # Stores the element from the # ending in increasing order stack = [] # Iterate until j is greater than # or equal to 0 for j in range (N - 1 , - 1 , - 1 ): # If current array element is # greater than the prefix min # upto j if (arr[j] > preMin[j]): # Iterate while stack is not # empty and top element is # less than or equal to preMin[j] while ( len (stack) > 0 and stack[ - 1 ] < = preMin[j]): # Remove the top element del stack[ - 1 ] # If stack is not empty and top # element of the stack is less # than the current element if ( len (stack) > 0 and stack[ - 1 ] < arr[j]): return "Yes" # Push the arr[j] in stack stack.append(arr[j]) # If none of the above case # satisfy then return "No" return "No" # Driver code if __name__ = = '__main__' : # Input arr = [ 4 , 7 , 11 , 5 , 13 , 2 ] size = len (arr) print (recreationalSpot(arr, size)) # This code is contributed by mohit kumar 29 |
C#
// C# implementation of the above approach using System; using System.Collections.Generic; public class GFG{ // Function to check if it is possible // to select three buildings that // satisfy the given condition static String recreationalSpot( int []arr, int N) { if (N < 3) { return "No" ; } // Stores prefix min array int []preMin = new int [N]; preMin[0] = arr[0]; // Iterate over the range [1, N-1] for ( int i = 1; i < N; i++) { preMin[i] = Math.Min(preMin[i - 1], arr[i]); } // Stores the element from the // ending in increasing order Stack< int > stack = new Stack< int >(); // Iterate until j is greater than // or equal to 0 for ( int j = N - 1; j >= 0; j--) { // If current array element is // greater than the prefix min // upto j if (arr[j] > preMin[j]) { // Iterate while stack is not // empty and top element is // less than or equal to preMin[j] while (stack.Count!=0 && stack.Peek() <= preMin[j]) { // Remove the top element stack.Pop(); } // If stack is not empty and top // element of the stack is less // than the current element if (stack.Count!=0 && stack.Peek() < arr[j]) { return "Yes" ; } // Push the arr[j] in stack stack.Push(arr[j]); } } // If none of the above case // satisfy then return "No" return "No" ; } // Driver code public static void Main(String[] args) { // Input int []arr = { 4, 7, 11, 5, 13, 2 }; int size = arr.Length; Console.WriteLine(recreationalSpot(arr, size)); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // JavaScript implementation of the above approach // Function to check if it is possible // to select three buildings that // satisfy the given condition function recreationalSpot(arr, N) { if (N < 3) { return "No" ; } // Stores prefix min array var preMin = new Array(N); preMin[0] = arr[0]; var i; // Iterate over the range [1, N-1] for (i = 1; i < N; i++) { preMin[i] = Math.min(preMin[i - 1], arr[i]); } // Stores the element from the // ending in increasing order var st = []; var j; // Iterate until j is greater than // or equal to 0 for (j = N - 1; j >= 0; j--) { // If current array element is // greater than the prefix min // upto j if (arr[j] > preMin[j]) { // Iterate while st is not // empty and top element is // less than or equal to preMin[j] while (st.length>0 && st[st.length-1] <= preMin[j]) { // Remove the top element st.pop(); } // If st is not empty and top // element of the st is less // than the current element if (st.length>0 && st[st.length-1] < arr[j]) { return "Yes" ; } // Push the arr[j] in st st.push(arr[j]); } } // If none of the above case // satisfy then return "No" return "No" ; } // Driver code // Input var arr = [4, 7, 11, 5, 13, 2]; var size = arr.length; document.write(recreationalSpot(arr, size)); </script> |
Yes
Time Complexity: O(N)
Auxiliary Space: O(N)
ANOTHER APPROACH USING 2 ARRAYS AND STACK:
Intuition:
- We create 2 arrays named nse(next smaller element) and nge(next greater element) for storing each element nge and nse on left.
- We create a Stack to keep track of the highest and lowest element encountered to fill the 2 arrays.
- Algorithm works like:
- For filling the nse array, we check everytime if st.peek()>=arr[i], then we keep poping to ensure the next smaller element is at the top of stack and if stack comes to be empty, then we fill -1.
- Similarly, for nge array,we check if st.peek()<=arr[i] , then we keep poping to ensure the next greater element is at the top and if stack comes to be empty, then we fill -1.
- Atlast we traverse though the array and check if nge[i]>nse[i] then we return true because we would get the 132 combination.
Implementation:
C++
// C++ implementation of the above approach #include <bits/stdc++.h> using namespace std; // Function to recreate the spot bool recreationalSpot( int a[], int n) { // sm[i]-> smallest element in [0,i] int sm[n]; stack< int > s; sm[0] = a[0]; // Find the minimum value for ( int i = 1; i < n; i++) sm[i] = min(sm[i - 1], a[i]); for ( int i = n - 1; i > 0; i--) { while (!s.empty() && a[i] > s.top()) { if (sm[i - 1] < s.top()) { return true ; } s.pop(); } // Stores the element in the stack s.push(a[i]); } return false ; } // Driver Code int main() { int arr[] = { 4, 7, 11, 5, 13, 2 }; int size = sizeof (arr) / sizeof (arr[0]); cout << recreationalSpot(arr, size); } |
Java
// Java program to create recreational spot. import java.io.*; import java.util.*; class GFG { static boolean recreationalSpot( int [] arr, int n) { int nge[] = new int [n]; int nse[] = new int [n]; Stack<Integer> st = new Stack<>(); for ( int i = 0 ; i < n; i++) { while (st.isEmpty() == false && arr[st.peek()] >= arr[i]) st.pop(); if (st.isEmpty()) nse[i] = - 1 ; else nse[i] = st.peek(); st.push(i); } st.clear(); for ( int i = 0 ; i < n; i++) { while (st.isEmpty() == false && arr[st.peek()] <= arr[i]) st.pop(); if (st.isEmpty()) nge[i] = - 1 ; else nge[i] = st.peek(); st.push(i); } for ( int i = 0 ; i < n; i++) { if (nge[i] != - 1 && nse[i] != - 1 ) { if (nge[i] > nse[i]) return true ; else { int x = nse[nge[i]]; // Find the nse of // nge[i]; while (x != - 1 ) { if (arr[x] < arr[i]) return true ; x = nse[x]; // Check if the nge's // nse is smaller than // arr[i] } } } } return false ; } public static void main(String[] args) { int arr[] = { 4 , 7 , 11 , 5 , 13 , 2 }; int size = arr.length; System.out.println(recreationalSpot(arr, size)); } } // This code is contributed by Raunak Singh |
Python3
# Function to recreate the spot def recreationalSpot(a, n): # sm[i] -> smallest element in [0, i] sm = [ 0 ] * n s = [] sm[ 0 ] = a[ 0 ] # Find the minimum value for i in range ( 1 , n): sm[i] = min (sm[i - 1 ], a[i]) for i in range (n - 1 , 0 , - 1 ): while len (s) > 0 and a[i] > s[ - 1 ]: if sm[i - 1 ] < s[ - 1 ]: return True s.pop() # Stores the element in the stack s.append(a[i]) return False # Driver Code arr = [ 4 , 7 , 11 , 5 , 13 , 2 ] size = len (arr) print (recreationalSpot(arr, size)) |
C#
using System; using System.Collections.Generic; public class Program { public static bool RecreationalSpot( int [] a, int n) { // sm[i]-> smallest element in [0,i] int [] sm = new int [n]; Stack< int > s = new Stack< int >(); sm[0] = a[0]; // Find the minimum value for ( int i = 1; i < n; i++) sm[i] = Math.Min(sm[i - 1], a[i]); for ( int i = n - 1; i > 0; i--) { while (s.Count > 0 && a[i] > s.Peek()) { if (sm[i - 1] < s.Peek()) { return true ; } s.Pop(); } // Stores the element in the stack s.Push(a[i]); } return false ; } public static void Main() { int [] arr = { 4, 7, 11, 5, 13, 2 }; int size = arr.Length; Console.WriteLine(RecreationalSpot(arr, size)); } } |
Javascript
// Function to recreate the spot function recreationalSpot(a) { const n = a.length; const sm = []; const stack = []; sm[0] = a[0]; // Find the minimum value for (let i = 1; i < n; i++) sm[i] = Math.min(sm[i - 1], a[i]); for (let i = n - 1; i > 0; i--) { while (stack.length > 0 && a[i] > stack[stack.length - 1]) { if (sm[i - 1] < stack[stack.length - 1]) { return true ; } stack.pop(); } // Stores the element in the stack stack.push(a[i]); } return false ; } // Driver Code const arr = [4, 7, 11, 5, 13, 2]; console.log(recreationalSpot(arr)); |
true
Time Complexity: O(N), since we are traversing the array.
Space Complexity: O(N), because we are using 2 arrays and 1 stack.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!