Sunday, November 17, 2024
Google search engine
HomeData Modelling & AICheck if a number is divisible by 17 using bitwise operators

Check if a number is divisible by 17 using bitwise operators

Given a number n, check if it is divisible by 17 using bitwise operators. 
Examples: 
 

Input : n = 34
Output : 34 is divisible by 17

Input :  n = 43
Output : 43 is not divisible by 17

 

A naive approach will be to check it by % operator if it leaves a remainder of 0.
To do division using Bitwise operators, we must rewrite the expression in powers of 2. 
 

n/17 = (16*n)/(17*16)
     = (17 - 1)*n/(17*16)
     = (n/16) - (n/(17*16))

We can rewrite n/16 as floor(n/16) + (n%16)/16 using general rule of division. 
 

n/17 = floor(n/16) + (n%16)/16 - 
       (floor(n/16) + (n%16)/16)/17
     = floor(n/16) - (floor(n/16) - 
            17*(n%16)/16 + (n%16)/16)/17
     = floor(n/16) - (floor(n/16)-n%16)/17

The left-hand-side of this equation is n/17. That will be an integer only when the right-hand-side is an integer. floor(n/16) is an integer by definition. So the whole left-hand-side would be an integer if (floor(n/16)-n%16)/17 is also an integer.
This implies n is divisible by 17 if (floor(n/16)-n%16) is divisible by 17.
(floor(n/16)-n%16) can be written in bitwise as (int)(n>>4) – (int)(n&15) where n>>4 means n/16 and n&15 means n%16 
Below is the implementation of the above approach: 
 

CPP




// CPP program to check if a number is
// divisible by 17 or not using bitwise
// operator.
#include <bits/stdc++.h>
using namespace std;
 
// function to check recursively if the
// number is divisible by 17 or not
bool isDivisibleby17(int n)
{
    // if n=0 or n=17 then yes
    if (n == 0 || n == 17)
        return true;
 
    // if n is less than 17, not
    // divisible by 17
    if (n < 17)
        return false;
 
    // reducing the number by floor(n/16)
    // - n%16
    return isDivisibleby17((int)(n >> 4) - (int)(n & 15));
}
 
// driver code to check the above function
int main()
{
    int n = 35;
    if (isDivisibleby17(n))
        cout << n << " is divisible by 17";
    else
        cout << n << " is not divisible by 17";
    return 0;
}


Java




// Java program to check if a number is
// divisible by 17 or not using bitwise
// operator.
class GFG{
     
    // function to check recursively if the
    // number is divisible by 17 or not
    static boolean isDivisibleby17(int n)
    {
         
        // if n=0 or n=17 then yes
        if (n == 0 || n == 17)
            return true;
     
        // if n is less than 17, not
        // divisible by 17
        if (n < 17)
            return false;
     
        // reducing the number by
        // floor(n/16) - n%16
        return isDivisibleby17((int)(n >> 4)
                            - (int)(n & 15));
    }
     
    // driver function
    public static void main(String[] args)
    {
        int n = 35;
        if (isDivisibleby17(n) == true)
            System.out.printf
            ("%d is divisible by 17",n);
        else
            System.out.printf
            ("%d is not divisible by 17",n);
    }
}
 
// This code is contributed by
// Smitha Dinesh Semwal


Python3




# Python 3 program to
# check if a number is
# divisible by 17 or
# not using bitwise
# operator.
 
# function to check recursively if the
# number is divisible by 17 or not
def isDivisibleby17(n):
 
    # if n=0 or n=17 then yes
    if (n == 0 or n == 17):
        return True
 
    # if n is less than 17, not
    # divisible by 17
    if (n < 17):
        return False
 
    # reducing the number by floor(n/16)
    # - n%16
    return isDivisibleby17((int)(n >> 4) - (int)(n & 15))
 
 
# driver code to check the above function
n = 35
if (isDivisibleby17(n)):
    print(n,"is divisible by 17")
else:
    print(n,"is not divisible by 17")
 
# This code is contributed by
# Smitha Dinesh Semwal


C#




// C# program to check if a number is
// divisible by 17 or not using bitwise
// operator.
using System;
 
class GFG
{
     
    // function to check recursively if the
    // number is divisible by 17 or not
    static bool isDivisibleby17(int n)
    {
         
        // if n=0 or n=17 then yes
        if (n == 0 || n == 17)
            return true;
     
        // if n is less than 17, not
        // divisible by 17
        if (n < 17)
            return false;
     
        // reducing the number by
        // floor(n/16) - n%16
        return isDivisibleby17((int)(n >> 4)
                            - (int)(n & 15));
    }
     
    // Driver function
    public static void Main()
    {
        int n = 35;
        if (isDivisibleby17(n) == true)
            Console.WriteLine
            (n +"is divisible by 17");
        else
            Console.WriteLine
            ( n+ " is not divisible by 17");
    }
}
 
// This code is contributed by
// vt_m


PHP




<?php
// php program to check if a
// number is divisible by 17
// or not using bitwise
// operator.
 
// function to check recursively
// if the number is divisible
// by 17 or not
function isDivisibleby17($n)
{
     
    // if n=0 or n=17 then yes
    if ($n == 0 || $n == 17)
        return true;
 
    // if n is less than 17, not
    // divisible by 17
    if ($n < 17)
        return false;
 
    // reducing the number by floor(n/16)
    // - n%16
    return isDivisibleby17((int)($n >> 4) -
                            (int)($n & 15));
}
 
    // Driver Code
    $n = 35;
    if (isDivisibleby17($n))
        echo $n." is divisible by 17";
    else
        echo $n." is not divisible by 17";
 
// This code is contributed by mits
?>


Javascript




<script>
 
// JavaScript program to check if a number is
// divisible by 17 or not using bitwise
// operator.
 
// function to check recursively if the
// number is divisible by 17 or not
function isDivisibleby17(n)
{
    // if n=0 or n=17 then yes
    if (n == 0 || n == 17)
        return true;
 
    // if n is less than 17, not
    // divisible by 17
    if (n < 17)
        return false;
 
    // reducing the number by floor(n/16)
    // - n%16
    return isDivisibleby17(Math.floor(n >> 4) - Math.floor(n & 15));
}
 
// driver code to check the above function
 
    let n = 35;
    if (isDivisibleby17(n))
        document.write(n + " is divisible by 17");
    else
        document.write(n + " is not divisible by 17");
 
// This code is contributed by Surbhi Tyagi.
 
</script>


Output: 

35 is not divisible by 17

 Time Complexity: O(log16N), as we are using recursion and in each call we are decrementing by division of 16.

Auxiliary Space: O(1), as we are not using any extra space.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments