Given a number n, check if it is divisible by 17 using bitwise operators.
Examples:
Input : n = 34 Output : 34 is divisible by 17 Input : n = 43 Output : 43 is not divisible by 17
A naive approach will be to check it by % operator if it leaves a remainder of 0.
To do division using Bitwise operators, we must rewrite the expression in powers of 2.
n/17 = (16*n)/(17*16) = (17 - 1)*n/(17*16) = (n/16) - (n/(17*16))
We can rewrite n/16 as floor(n/16) + (n%16)/16 using general rule of division.
n/17 = floor(n/16) + (n%16)/16 - (floor(n/16) + (n%16)/16)/17 = floor(n/16) - (floor(n/16) - 17*(n%16)/16 + (n%16)/16)/17 = floor(n/16) - (floor(n/16)-n%16)/17
The left-hand-side of this equation is n/17. That will be an integer only when the right-hand-side is an integer. floor(n/16) is an integer by definition. So the whole left-hand-side would be an integer if (floor(n/16)-n%16)/17 is also an integer.
This implies n is divisible by 17 if (floor(n/16)-n%16) is divisible by 17.
(floor(n/16)-n%16) can be written in bitwise as (int)(n>>4) – (int)(n&15) where n>>4 means n/16 and n&15 means n%16
Below is the implementation of the above approach:
CPP
// CPP program to check if a number is // divisible by 17 or not using bitwise // operator. #include <bits/stdc++.h> using namespace std; // function to check recursively if the // number is divisible by 17 or not bool isDivisibleby17( int n) { // if n=0 or n=17 then yes if (n == 0 || n == 17) return true ; // if n is less than 17, not // divisible by 17 if (n < 17) return false ; // reducing the number by floor(n/16) // - n%16 return isDivisibleby17(( int )(n >> 4) - ( int )(n & 15)); } // driver code to check the above function int main() { int n = 35; if (isDivisibleby17(n)) cout << n << " is divisible by 17" ; else cout << n << " is not divisible by 17" ; return 0; } |
Java
// Java program to check if a number is // divisible by 17 or not using bitwise // operator. class GFG{ // function to check recursively if the // number is divisible by 17 or not static boolean isDivisibleby17( int n) { // if n=0 or n=17 then yes if (n == 0 || n == 17 ) return true ; // if n is less than 17, not // divisible by 17 if (n < 17 ) return false ; // reducing the number by // floor(n/16) - n%16 return isDivisibleby17(( int )(n >> 4 ) - ( int )(n & 15 )); } // driver function public static void main(String[] args) { int n = 35 ; if (isDivisibleby17(n) == true ) System.out.printf ( "%d is divisible by 17" ,n); else System.out.printf ( "%d is not divisible by 17" ,n); } } // This code is contributed by // Smitha Dinesh Semwal |
Python3
# Python 3 program to # check if a number is # divisible by 17 or # not using bitwise # operator. # function to check recursively if the # number is divisible by 17 or not def isDivisibleby17(n): # if n=0 or n=17 then yes if (n = = 0 or n = = 17 ): return True # if n is less than 17, not # divisible by 17 if (n < 17 ): return False # reducing the number by floor(n/16) # - n%16 return isDivisibleby17(( int )(n >> 4 ) - ( int )(n & 15 )) # driver code to check the above function n = 35 if (isDivisibleby17(n)): print (n, "is divisible by 17" ) else : print (n, "is not divisible by 17" ) # This code is contributed by # Smitha Dinesh Semwal |
C#
// C# program to check if a number is // divisible by 17 or not using bitwise // operator. using System; class GFG { // function to check recursively if the // number is divisible by 17 or not static bool isDivisibleby17( int n) { // if n=0 or n=17 then yes if (n == 0 || n == 17) return true ; // if n is less than 17, not // divisible by 17 if (n < 17) return false ; // reducing the number by // floor(n/16) - n%16 return isDivisibleby17(( int )(n >> 4) - ( int )(n & 15)); } // Driver function public static void Main() { int n = 35; if (isDivisibleby17(n) == true ) Console.WriteLine (n + "is divisible by 17" ); else Console.WriteLine ( n+ " is not divisible by 17" ); } } // This code is contributed by // vt_m |
PHP
<?php // php program to check if a // number is divisible by 17 // or not using bitwise // operator. // function to check recursively // if the number is divisible // by 17 or not function isDivisibleby17( $n ) { // if n=0 or n=17 then yes if ( $n == 0 || $n == 17) return true; // if n is less than 17, not // divisible by 17 if ( $n < 17) return false; // reducing the number by floor(n/16) // - n%16 return isDivisibleby17((int)( $n >> 4) - (int)( $n & 15)); } // Driver Code $n = 35; if (isDivisibleby17( $n )) echo $n . " is divisible by 17" ; else echo $n . " is not divisible by 17" ; // This code is contributed by mits ?> |
Javascript
<script> // JavaScript program to check if a number is // divisible by 17 or not using bitwise // operator. // function to check recursively if the // number is divisible by 17 or not function isDivisibleby17(n) { // if n=0 or n=17 then yes if (n == 0 || n == 17) return true ; // if n is less than 17, not // divisible by 17 if (n < 17) return false ; // reducing the number by floor(n/16) // - n%16 return isDivisibleby17(Math.floor(n >> 4) - Math.floor(n & 15)); } // driver code to check the above function let n = 35; if (isDivisibleby17(n)) document.write(n + " is divisible by 17" ); else document.write(n + " is not divisible by 17" ); // This code is contributed by Surbhi Tyagi. </script> |
Output:
35 is not divisible by 17
Time Complexity: O(log16N), as we are using recursion and in each call we are decrementing by division of 16.
Auxiliary Space: O(1), as we are not using any extra space.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!