Given two positive numbers N and M, the task is to check whether the given pairs of numbers (N, M) form a Betrothed Numbers or not.
Examples:
Input: N = 48, M = 75
Output: Yes
Explanation:
The proper divisors of 48 are 1, 2, 3, 4, 6, 8, 12, 16, 24
Sum of proper divisors of 48 is 75(sum1)
The proper divisors of 75 are 1, 3, 5, 15, 25
Sum of proper divisors of 48 is 49(sum2)
Since sum2 = N + 1, therefore the given pairs form Betrothed numbers.
Input: N = 95, M = 55
Output: No
Explanation:
The proper divisors of 95 are 1, 5, 19
Sum of proper divisors of 48 is 25(sum1)
The proper divisors of 55 are 1, 5, 11
Sum of proper divisors of 48 is 17(sum2)
Since Neither sum2 is equals N + 1 nor sum1 is equals to M + 1, therefore the given pairs doesn’t form Betrothed numbers.
Approach:
- Find the sum of proper divisors of the given numbers N and M.
- If sum of proper divisors of N is equals to M + 1 or sum of proper divisors of M is equals to N + 1 then the given pairs form a Betrothed Numbers.
- Else it doesn’t forms a pair of Betrothed Numbers.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to check whether N is // Perfect Square or not bool isPerfectSquare( int N) { // Find sqrt double sr = sqrt (N); return (sr - floor (sr)) == 0; } // Function to check whether the given // pairs of numbers is Betrothed Numbers // or not void BetrothedNumbers( int n, int m) { int Sum1 = 1; int Sum2 = 1; // For finding the sum of all the // divisors of first number n for ( int i = 2; i <= sqrt (n); i++) { if (n % i == 0) { Sum1 += i + (isPerfectSquare(n) ? 0 : n / i); } } // For finding the sum of all the // divisors of second number m for ( int i = 2; i <= sqrt (m); i++) { if (m % i == 0) { Sum2 += i + (isPerfectSquare(m) ? 0 : m / i); } } if ((n + 1 == Sum2) && (m + 1 == Sum1)) { cout << "YES" << endl; } else { cout << "NO" << endl; } } // Driver Code int main() { int N = 9504; int M = 20734; // Function Call BetrothedNumbers(N, M); return 0; } |
Java
// Java program for the above approach class GFG{ // Function to check whether N is // Perfect Square or not static boolean isPerfectSquare( int N) { // Find sqrt double sr = Math.sqrt(N); return (sr - Math.floor(sr)) == 0 ; } // Function to check whether the given // pairs of numbers is Betrothed Numbers // or not static void BetrothedNumbers( int n, int m) { int Sum1 = 1 ; int Sum2 = 1 ; // For finding the sum of all the // divisors of first number n for ( int i = 2 ; i <= Math.sqrt(n); i++) { if (n % i == 0 ) { Sum1 += i + (isPerfectSquare(n) ? 0 : n / i); } } // For finding the sum of all the // divisors of second number m for ( int i = 2 ; i <= Math.sqrt(m); i++) { if (m % i == 0 ) { Sum2 += i + (isPerfectSquare(m) ? 0 : m / i); } } if ((n + 1 == Sum2) && (m + 1 == Sum1)) { System.out.print( "YES" + "\n" ); } else { System.out.print( "NO" + "\n" ); } } // Driver Code public static void main(String[] args) { int N = 9504 ; int M = 20734 ; // Function Call BetrothedNumbers(N, M); } } // This code is contributed by 29AjayKumar |
Python3
# Python3 program for the above approach from math import sqrt,floor # Function to check whether N is # Perfect Square or not def isPerfectSquare(N): # Find sqrt sr = sqrt(N) return (sr - floor(sr)) = = 0 # Function to check whether the given # pairs of numbers is Betrothed Numbers # or not def BetrothedNumbers(n,m): Sum1 = 1 Sum2 = 1 # For finding the sum of all the # divisors of first number n for i in range ( 2 , int (sqrt(n)) + 1 , 1 ): if (n % i = = 0 ): if (isPerfectSquare(n)): Sum1 + = i else : Sum1 + = i + n / i # For finding the sum of all the # divisors of second number m for i in range ( 2 , int (sqrt(m)) + 1 , 1 ): if (m % i = = 0 ): if (isPerfectSquare(m)): Sum2 + = i else : Sum2 + = i + (m / i) if ((n + 1 = = Sum2) and (m + 1 = = Sum1)): print ( "YES" ) else : print ( "NO" ) # Driver Code if __name__ = = '__main__' : N = 9504 M = 20734 # Function Call BetrothedNumbers(N, M) # This code is contributed by Surendra_Gangwar |
C#
// C# program for the above approach using System; class GFG{ // Function to check whether N is // perfect square or not static bool isPerfectSquare( int N) { // Find sqrt double sr = Math.Sqrt(N); return (sr - Math.Floor(sr)) == 0; } // Function to check whether the given // pairs of numbers is Betrothed numbers // or not static void BetrothedNumbers( int n, int m) { int Sum1 = 1; int Sum2 = 1; // For finding the sum of all the // divisors of first number n for ( int i = 2; i <= Math.Sqrt(n); i++) { if (n % i == 0) { Sum1 += i + (isPerfectSquare(n) ? 0 : n / i); } } // For finding the sum of all the // divisors of second number m for ( int i = 2; i <= Math.Sqrt(m); i++) { if (m % i == 0) { Sum2 += i + (isPerfectSquare(m) ? 0 : m / i); } } if ((n + 1 == Sum2) && (m + 1 == Sum1)) { Console.Write( "YES" + "\n" ); } else { Console.Write( "NO" + "\n" ); } } // Driver Code public static void Main(String[] args) { int N = 9504; int M = 20734; // Function Call BetrothedNumbers(N, M); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // Javascript program for the above approach // Function to check whether N is // Perfect Square or not function isPerfectSquare(N) { // Find sqrt let sr = Math.sqrt(N); return (sr - Math.floor(sr)) == 0; } // Function to check whether the given // pairs of numbers is Betrothed Numbers // or not function BetrothedNumbers(n, m) { let Sum1 = 1; let Sum2 = 1; // For finding the sum of all the // divisors of first number n for (let i = 2; i <= Math.sqrt(n); i++) { if (n % i == 0) { Sum1 += i + (isPerfectSquare(n) ? 0 : parseInt(n / i)); } } // For finding the sum of all the // divisors of second number m for (let i = 2; i <= Math.sqrt(m); i++) { if (m % i == 0) { Sum2 += i + (isPerfectSquare(m) ? 0 : parseInt(m / i)); } } if ((n + 1 == Sum2) && (m + 1 == Sum1)) { document.write( "YES" ); } else { document.write( "NO" ); } } // Driver Code let N = 9504; let M = 20734; // Function Call BetrothedNumbers(N, M); // This code is contributed by rishavmahato348. </script> |
NO
Time Complexity: O(?N + ?M)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!