Monday, November 18, 2024
Google search engine
HomeData Modelling & AIC++ Program For Sorting A Linked List That Is Sorted Alternating Ascending...

C++ Program For Sorting A Linked List That Is Sorted Alternating Ascending And Descending Orders

Given a Linked List. The Linked List is in alternating ascending and descending orders. Sort the list efficiently. 

Example: 

Input List: 10 -> 40 -> 53 -> 30 -> 67 -> 12 -> 89 -> NULL
Output List: 10 -> 12 -> 30 -> 40 -> 53 -> 67 -> 89 -> NULL

Input List: 1 -> 4 -> 3 -> 2 -> 5 -> NULL
Output List: 1 -> 2 -> 3 -> 4 -> 5 -> NULL

Simple Solution: 
Approach: The basic idea is to apply to merge sort on the linked list. 
The implementation is discussed in this article: Merge Sort for linked List.
Complexity Analysis:  

  • Time Complexity: The merge sort of linked list takes O(n log n) time. In the merge sort tree, the height is log n. Sorting each level will take O(n) time. So time complexity is O(n log n).
  • Auxiliary Space: O(n log n), In the merge sort tree the height is log n. Storing each level will take O(n) space. So space complexity is O(n log n).

Efficient Solution: 
Approach:  

  1. Separate two lists.
  2. Reverse the one with descending order
  3. Merge both lists.

Diagram: 

Below are the implementations of the above algorithm: 

C++




// C++ program to sort a linked
// list that is alternatively sorted 
// in increasing and decreasing order
#include <bits/stdc++.h>
using namespace std;
  
// Linked list node
struct Node 
{
    int data;
    struct Node* next;
};
  
Node* mergelist(Node* head1, 
                Node* head2);
void splitList(Node* head, 
               Node** Ahead, 
               Node** Dhead);
void reverselist(Node*& head);
  
// This is the main function that 
// sorts the linked list
void sort(Node** head)
{
    // Split the list into lists
    Node *Ahead, *Dhead;
    splitList(*head, &Ahead, &Dhead);
  
    // Reverse the descending linked list
    reverselist(Dhead);
  
    // Merge the two linked lists
    *head = mergelist(Ahead, Dhead);
}
  
// A utility function to create a 
// new node
Node* newNode(int key)
{
    Node* temp = new Node;
    temp->data = key;
    temp->next = NULL;
    return temp;
}
  
// A utility function to reverse a 
// linked list
void reverselist(Node*& head)
{
    Node *prev = NULL, 
         *curr = head, *next;
    while (curr) 
    {
        next = curr->next;
        curr->next = prev;
        prev = curr;
        curr = next;
    }
    head = prev;
}
  
// A utility function to print 
// a linked list
void printlist(Node* head)
{
    while (head != NULL) 
    {
        cout << head->data << " ";
        head = head->next;
    }
    cout << endl;
}
  
// A utility function to merge 
// two sorted linked lists
Node* mergelist(Node* head1, 
                Node* head2)
{
    // Base cases
    if (!head1)
        return head2;
    if (!head2)
        return head1;
  
    Node* temp = NULL;
    if (head1->data < head2->data) 
    {
        temp = head1;
        head1->next = mergelist(head1->next, 
                                head2);
    }
    else 
    {
        temp = head2;
        head2->next = mergelist(head1, 
                                head2->next);
    }
    return temp;
}
  
// This function alternatively splits
// a linked list with head as head into two:
// For example, 10->20->30->15->40->7 
// is splitted into 10->30->40 and 20->15->7
// "Ahead" is reference to head of ascending 
// linked list
// "Dhead" is reference to head of descending 
// linked list
void splitList(Node* head, Node** Ahead, 
               Node** Dhead)
{
    // Create two dummy nodes to 
    // initialize heads of two 
    // linked list
    *Ahead = newNode(0);
    *Dhead = newNode(0);
  
    Node* ascn = *Ahead;
    Node* dscn = *Dhead;
    Node* curr = head;
  
    // Link alternate nodes
    while (curr) 
    {
        // Link alternate nodes of ascending 
        // linked list
        ascn->next = curr;
        ascn = ascn->next;
        curr = curr->next;
  
        // Link alternate nodes of descending 
        // linked list
        if (curr) 
        {
            dscn->next = curr;
            dscn = dscn->next;
            curr = curr->next;
        }
    }
  
    ascn->next = NULL;
    dscn->next = NULL;
    *Ahead = (*Ahead)->next;
    *Dhead = (*Dhead)->next;
}
  
// Driver code
int main()
{
    Node* head = newNode(10);
    head->next = newNode(40);
    head->next->next = newNode(53);
    head->next->next->next = 
    newNode(30);
    head->next->next->next->next = 
    newNode(67);
    head->next->next->next->next->next = 
    newNode(12);
    head->next->next->next->next->next->next = 
    newNode(89);
  
    cout << "Given Linked List is " << endl;
    printlist(head);
  
    sort(&head);
  
    cout << "Sorted Linked List is " << endl;
    printlist(head);
  
    return 0;
}


Output: 

Given Linked List is
10 40 53 30 67 12 89
Sorted Linked List is
10 12 30 40 53 67 89

Complexity Analysis:  

  • Time Complexity: O(n). 
    One traversal is needed to separate the list and reverse them. The merging of sorted lists takes O(n) time.
  • Auxiliary Space: O(1). 
    No extra space is required.

Please refer complete article on Sort a linked list that is sorted alternating ascending and descending orders? for more details!

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments