Given a Linked List. The Linked List is in alternating ascending and descending orders. Sort the list efficiently.
Example:
Input List: 10 -> 40 -> 53 -> 30 -> 67 -> 12 -> 89 -> NULL Output List: 10 -> 12 -> 30 -> 40 -> 53 -> 67 -> 89 -> NULL Input List: 1 -> 4 -> 3 -> 2 -> 5 -> NULL Output List: 1 -> 2 -> 3 -> 4 -> 5 -> NULL
Simple Solution:
Approach: The basic idea is to apply to merge sort on the linked list.
The implementation is discussed in this article: Merge Sort for linked List.
Complexity Analysis:
- Time Complexity: The merge sort of linked list takes O(n log n) time. In the merge sort tree, the height is log n. Sorting each level will take O(n) time. So time complexity is O(n log n).
- Auxiliary Space: O(n log n), In the merge sort tree the height is log n. Storing each level will take O(n) space. So space complexity is O(n log n).
Efficient Solution:
Approach:
- Separate two lists.
- Reverse the one with descending order
- Merge both lists.
Diagram:
Below are the implementations of the above algorithm:
C++
// C++ program to sort a linked // list that is alternatively sorted // in increasing and decreasing order #include <bits/stdc++.h> using namespace std; // Linked list node struct Node { int data; struct Node* next; }; Node* mergelist(Node* head1, Node* head2); void splitList(Node* head, Node** Ahead, Node** Dhead); void reverselist(Node*& head); // This is the main function that // sorts the linked list void sort(Node** head) { // Split the list into lists Node *Ahead, *Dhead; splitList(*head, &Ahead, &Dhead); // Reverse the descending linked list reverselist(Dhead); // Merge the two linked lists *head = mergelist(Ahead, Dhead); } // A utility function to create a // new node Node* newNode( int key) { Node* temp = new Node; temp->data = key; temp->next = NULL; return temp; } // A utility function to reverse a // linked list void reverselist(Node*& head) { Node *prev = NULL, *curr = head, *next; while (curr) { next = curr->next; curr->next = prev; prev = curr; curr = next; } head = prev; } // A utility function to print // a linked list void printlist(Node* head) { while (head != NULL) { cout << head->data << " " ; head = head->next; } cout << endl; } // A utility function to merge // two sorted linked lists Node* mergelist(Node* head1, Node* head2) { // Base cases if (!head1) return head2; if (!head2) return head1; Node* temp = NULL; if (head1->data < head2->data) { temp = head1; head1->next = mergelist(head1->next, head2); } else { temp = head2; head2->next = mergelist(head1, head2->next); } return temp; } // This function alternatively splits // a linked list with head as head into two: // For example, 10->20->30->15->40->7 // is splitted into 10->30->40 and 20->15->7 // "Ahead" is reference to head of ascending // linked list // "Dhead" is reference to head of descending // linked list void splitList(Node* head, Node** Ahead, Node** Dhead) { // Create two dummy nodes to // initialize heads of two // linked list *Ahead = newNode(0); *Dhead = newNode(0); Node* ascn = *Ahead; Node* dscn = *Dhead; Node* curr = head; // Link alternate nodes while (curr) { // Link alternate nodes of ascending // linked list ascn->next = curr; ascn = ascn->next; curr = curr->next; // Link alternate nodes of descending // linked list if (curr) { dscn->next = curr; dscn = dscn->next; curr = curr->next; } } ascn->next = NULL; dscn->next = NULL; *Ahead = (*Ahead)->next; *Dhead = (*Dhead)->next; } // Driver code int main() { Node* head = newNode(10); head->next = newNode(40); head->next->next = newNode(53); head->next->next->next = newNode(30); head->next->next->next->next = newNode(67); head->next->next->next->next->next = newNode(12); head->next->next->next->next->next->next = newNode(89); cout << "Given Linked List is " << endl; printlist(head); sort(&head); cout << "Sorted Linked List is " << endl; printlist(head); return 0; } |
Output:
Given Linked List is 10 40 53 30 67 12 89 Sorted Linked List is 10 12 30 40 53 67 89
Complexity Analysis:
- Time Complexity: O(n).
One traversal is needed to separate the list and reverse them. The merging of sorted lists takes O(n) time. - Auxiliary Space: O(1).
No extra space is required.
Please refer complete article on Sort a linked list that is sorted alternating ascending and descending orders? for more details!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!