Wednesday, November 20, 2024
Google search engine
HomeData Modelling & AIArray sum after replacing all occurrences of X by Y for Q...

Array sum after replacing all occurrences of X by Y for Q queries

Given an integer array arr[] and Q queries, the task is to find the sum of the array for each query of the following type: 

  • Each query contains 2 integers X and Y, where all the occurrences of X in arr[] are to be replaced by Y.
  • After each query, they print the sum of the array.

Examples:

Input: arr[] = { 1, 2, 1, 3, 2}, X[] = { 2, 3, 5 }, Y[] = { 3, 1, 2 } 
Output: 11 5 5 
Explanation: 
After the 1st query, replace 2 with 3, arr[] = { 1, 3, 1, 3, 3 }, Sum = 11. 
After the 2nd query, replace 3 with 1, arr[] = { 1, 1, 1, 1, 1 }, Sum = 5. 
After the 3rd query, replace 5 with 2, arr[] = { 1, 1, 1, 1, 1 }, Sum = 5. 

Input: arr[] = { 12, 22, 11, 11, 2}, X[] = {2, 11, 22}, Y[] = {12, 222, 2} 
Output: 68 490 470 

Naive Approach: 
The simplest approach to solve the problem mentioned above is to traverse through the array and replace all the instances of X with Y for each query and calculate the sum. 

Time Complexity: O(N * Q)

Efficient Approach: 
To optimize the above method, follow the steps given below: 

  • Precompute and store the sum of the array in a variable S and store the frequencies of array elements in a Map count.
  • Then, do the following for each query: 
    • Find the frequency of X stored on the map.
    • Subtract X * count[X] from S.
    • Set count[Y] = count[X] and then count[X] = 0.
    • Add Y * count[Y] to S.
    • Print the updated value of S.

Below is the implementation of the above approach:

C++




// C++ implementation to find the sum
// of the array for the given Q queries
 
#include <bits/stdc++.h>
using namespace std;
 
// Function that print the sum of
// the array for Q queries
void sumOfTheArrayForQuery(int* A, int N,
                           int* X, int* Y,
                           int Q)
{
    int sum = 0;
 
    // Stores the frequencies
    // of array elements
    unordered_map<int, int> count;
 
    // Calculate the sum of
    // the initial array and
    // store the frequency of
    // each element in map
 
    for (int i = 0; i < N; i++) {
        sum += A[i];
        count[A[i]]++;
    }
 
    // Iterate for all the queries
 
    for (int i = 0; i < Q; i++) {
        // Store query values
        int x = X[i], y = Y[i];
 
        // Decrement the sum accordingly
        sum -= count[X[i]] * X[i];
 
        // Increment the sum accordingly
        sum += count[X[i]] * Y[i];
 
        // Set count of Y[i]
        count[Y[i]] += count[X[i]];
 
        // Reset count of X[i]
        count[X[i]] = 0;
 
        // Print the sum
        cout << sum << " ";
    }
}
 
// Driver Code
int main()
{
    int arr[] = { 1, 2, 1, 3, 2 };
    int X[] = { 2, 3, 5 };
    int Y[] = { 3, 1, 2 };
 
    int N = sizeof(arr) / sizeof(arr[0]);
 
    int Q = sizeof(X) / sizeof(X[0]);
 
    // Function call
    sumOfTheArrayForQuery(arr, N, X, Y, Q);
 
    return 0;
}


Java




// Java implementation to
// find the sum of the array
// for the given Q queries
import java.util.*;
class GFG{
   
// Function that print the sum of
// the array for Q queries
public static void sumOfTheArrayForQuery(int[] A, int N,
                                         int[] X, int[] Y,
                                         int Q)
{
  int sum = 0;
 
  // Stores the frequencies
  // of array elements
  // Create an empty hash map
  HashMap<Integer,
          Integer> count = new HashMap<>();
 
  // Calculate the sum of
  // the initial array and
  // store the frequency of
  // each element in map
  for (int i = 0; i < N; i++)
  {
    sum += A[i];
    if (count.containsKey(A[i]))
    {
      count.replace(A[i],
      count.get(A[i]) + 1);
    }
    else
    {
      count.put(A[i], 1);
    }
  }
 
  // Iterate for all the queries
  for (int i = 0; i < Q; i++)
  {
    // Store query values
    int x = X[i], y = Y[i];
 
    if(count.containsKey(X[i]))
    {
      // Decrement the sum accordingly
      sum -= count.get(X[i]) * X[i];
      // Increment the sum accordingly
      sum += count.get(X[i]) * Y[i];
    }
 
    // Set count of Y[i]
    if(count.containsKey(Y[i]) &&
       count.containsKey(X[i]))
    {
      count.replace(Y[i],
      count.get(Y[i]) +
      count.get(X[i]));
    }
 
    // Reset count of X[i]
    if(count.containsKey(X[i]))
    {
      count.replace(X[i], 0);
    }
 
    // Print the sum
    System.out.print(sum + " ");
  }
}
 
// Driver code
public static void main(String[] args)
{
  int arr[] = {1, 2, 1, 3, 2};
  int X[] = {2, 3, 5};
  int Y[] = {3, 1, 2};
 
  int N = arr.length;
  int Q = X.length;
 
  // Function call
  sumOfTheArrayForQuery(arr, N,
                        X, Y, Q);
}
}
 
// This code is contributed by divyeshrabadiya07


Python3




# Python3 implementation to find the sum
# of the array for the given Q queries
 
# Function that print the sum of
# the array for Q queries
def sumOfTheArrayForQuery(A, N, X, Y, Q):
     
    sum = 0
 
    # Stores the frequencies
    # of array elements
    count = {}
 
    # Calculate the sum of
    # the initial array and
    # store the frequency of
    # each element in map
    for i in range(N):
        sum += A[i]
         
        if A[i] in count:
            count[A[i]] += 1
        else:
            count[A[i]] = 1
 
    # Iterate for all the queries
    for i in range(Q):
 
        # Store query values
        x = X[i]
        y = Y[i]
         
        if X[i] not in count:
            count[X[i]] = 0
        if Y[i] not in count:
            count[Y[i]] = 0
 
        # Decrement the sum accordingly
        sum -= (count[X[i]] * X[i])
 
        # Increment the sum accordingly
        sum += count[X[i]] * Y[i]
 
        # Set count of Y[i]
        count[Y[i]] += count[X[i]]
 
        # Reset count of X[i]
        count[X[i]] = 0
 
        # Print the sum
        print(sum, end = " ")
 
# Driver Code
arr = [ 1, 2, 1, 3, 2, ]
X = [ 2, 3, 5 ]
Y = [ 3, 1, 2 ]
N = len(arr)
Q = len(X)
 
# Function call
sumOfTheArrayForQuery(arr, N, X, Y, Q)
 
# This code is contributed by avanitrachhadiya2155


C#




// C# implementation to
// find the sum of the array
// for the given Q queries
using System;
using System.Collections.Generic;
class GFG{
   
// Function that print the sum of
// the array for Q queries
public static void sumOfTheArrayForQuery(int[] A, int N,
                                         int[] X, int[] Y,
                                         int Q)
{
  int sum = 0;
 
  // Stores the frequencies
  // of array elements
  // Create an empty hash map
  Dictionary<int,
             int> count = new Dictionary<int,
                                         int>();
 
  // Calculate the sum of
  // the initial array and
  // store the frequency of
  // each element in map
  for (int i = 0; i < N; i++)
  {
    sum += A[i];
    if (count.ContainsKey(A[i]))
    {
      count[A[i]]= count[A[i]] + 1;
    }
    else
    {
      count.Add(A[i], 1);
    }
  }
 
  // Iterate for all the queries
  for (int i = 0; i < Q; i++)
  {
    // Store query values
    int x = X[i], y = Y[i];
 
    if(count.ContainsKey(X[i]))
    {
      // Decrement the sum accordingly
      sum -= count[X[i]] * X[i];
      // Increment the sum accordingly
      sum += count[X[i]] * Y[i];
    }
 
    // Set count of Y[i]
    if(count.ContainsKey(Y[i]) &&
       count.ContainsKey(X[i]))
    {
      count[Y[i]] = count[Y[i]] +
                    count[X[i]];
    }
 
    // Reset count of X[i]
    if(count.ContainsKey(X[i]))
    {
      count[X[i]] = 0;
    }
 
    // Print the sum
    Console.Write(sum + " ");
  }
}
 
// Driver code
public static void Main(String[] args)
{
  int []arr = {1, 2, 1, 3, 2};
  int []X = {2, 3, 5};
  int []Y = {3, 1, 2};
 
  int N = arr.Length;
  int Q = X.Length;
 
  // Function call
  sumOfTheArrayForQuery(arr, N,
                        X, Y, Q);
}
}
 
// This code is contributed by Amit Katiyar


Javascript




<script>
 
 
// Javascript implementation to find the sum
// of the array for the given Q queries
 
// Function that print the sum of
// the array for Q queries
function sumOfTheArrayForQuery(A, N, X, Y, Q)
{
    var sum = 0;
 
    // Stores the frequencies
    // of array elements
    var count = new Map();
 
    // Calculate the sum of
    // the initial array and
    // store the frequency of
    // each element in map
 
    for (var i = 0; i < N; i++) {
        sum += A[i];
        if(count.has(A[i]))
            count.set(A[i], count.get(A[i])+1)
        else
            count.set(A[i], 1)
    }
 
    // Iterate for all the queries
 
    for (var i = 0; i < Q; i++) {
        // Store query values
        var x = X[i], y = Y[i];
 
        if(count.has(X[i]))
        {
            // Decrement the sum accordingly
            sum -= count.get(X[i]) * X[i];
 
                // Increment the sum accordingly
            sum += count.get(X[i]) * Y[i];
        }
 
        if(count.has(Y[i]))
        {
            // Set count of Y[i]
            count.set(Y[i], count.get(Y[i]) + count.get(X[i]));
        }
 
        // Reset count of X[i]
        count.set(X[i] , 0);
 
        // Print the sum
        document.write( sum + " ");
    }
}
 
// Driver Code
var arr = [1, 2, 1, 3, 2];
var X = [2, 3, 5 ];
var Y = [3, 1, 2 ];
var N = arr.length;
var Q = X.length;
// Function call
sumOfTheArrayForQuery(arr, N, X, Y, Q);
 
 
</script>


Output: 

11 5 5

 

Time Complexity: O(N+Q), as each query has a computational complexity of O(1). 
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments