Saturday, November 16, 2024
Google search engine
HomeData Modelling & AISum of nodes having sum of subtrees of opposite parities

Sum of nodes having sum of subtrees of opposite parities

Given a Binary Tree, the task is to find the sum of all such nodes from the given tree whose sum of left and right subtree is either odd and even or even and odd respectively.

Examples:

Input:
                 11
             /       \
          23        44
        /   \       /   \
      13   9   22   7
                 /  \
               6   15
Output: 33
Explanation: There are only two such nodes: 

  • Node 22 having left subtree and right subtree sum as 6 (even) and 15(odd).
  • Node 11 having left subtree and right subtree sum as 45 (odd) and 94 (even).

Therefore, the total sum = 22 + 11 = 33.

Input:
               11
             /     
           5       
        /   \      
      3     1  
Output: 0
Explanation: There is no such node satisfying the given condition.

Approach: The idea is to recursively calculate the sum of the left subtree and the sum of the right subtree and then check for the given condition. Follow the steps below to solve the problem:

  • Initialize a variable ans as 0 to store the sum of all such nodes.
  • Perform the PostOrder Traversal in the given Tree.
  • Find the sum of left and right subtree for each node and check if the sum are non-zero and check if sum of both the sums is odd or not. If found to be true, then include the current node value in ans.
  • Return the sum of all the nodes of left subtree, right subtree, and current node value in each recursive calls.
  • After completing the above steps, print the value of ans as the result.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// A binary tree node
struct Node {
 
    int data;
    Node *left, *right;   
};
 
/* Helper function that allocates a new node with the
   given data and NULL left and right pointers. */
struct Node* newNode(int data)
{
    struct Node* node = new Node;
    node->data = data;
    node->left = node->right = NULL;
    return(node);
}
    // Stores the desired result
     int mSum;
 
    // Function to find the sum of nodes
    // with subtree sums of opposite parities
     int getSum(Node *root)
    {
        
        // Return 0, if node is NULL
        if (root == NULL)
            return 0;
 
        // Recursively call left and
        // right subtree
        int lSum = getSum(root->left);
        int rSum = getSum(root->right);
 
        // Update mSum, if one subtree
        // sum is even and another is odd
        if (lSum != 0 && rSum != 0)
            if ((lSum + rSum) % 2 != 0)
                mSum += root->data;
 
        // Return the sum of subtree
        return lSum + rSum + root->data;
    }
 
    // Driver Code
    int main()
    {
        // Given number of nodes
        int n = 9;
 
        // Binary tree formation
       struct Node *root = newNode(11);
        root->left =  newNode(23);
        root->right =  newNode(44);
        root->left->left =  newNode(13);
        root->left->right =  newNode(9);
        root->right->left =  newNode(22);
        root->right->right =  newNode(7);
        root->right->left->left =  newNode(6);
        root->right->left->right = newNode(15);
 
        // 11
        //    /     \
        // 23       44
        //  /  \     /   \
        // 13   9   22     7
        //         / \
        // 6   15
 
        mSum = 0;
        getSum(root);
 
        // Print the sum
        cout<<(mSum);
    }
 
// This code is contributed by 29AjayKumar


Java




// Java program for the above approach
 
import java.util.*;
import java.lang.*;
 
// A binary tree node
class Node {
 
    int data;
    Node left, right;
 
    // Constructor
    Node(int item)
    {
        data = item;
        left = right = null;
    }
}
 
// Binary Tree Class
class BinaryTree {
 
    // Stores the desired result
    static int mSum;
 
    Node root;
 
    // Function to find the sum of nodes
    // with subtree sums of opposite parities
    static int getSum(Node root)
    {
        // Return 0, if node is null
        if (root == null)
            return 0;
 
        // Recursively call left and
        // right subtree
        int lSum = getSum(root.left);
        int rSum = getSum(root.right);
 
        // Update mSum, if one subtree
        // sum is even and another is odd
        if (lSum != 0 && rSum != 0)
            if ((lSum + rSum) % 2 != 0)
                mSum += root.data;
 
        // Return the sum of subtree
        return lSum + rSum + root.data;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        // Given number of nodes
        int n = 9;
 
        BinaryTree tree = new BinaryTree();
 
        // Binary tree formation
        tree.root = new Node(11);
        tree.root.left = new Node(23);
        tree.root.right = new Node(44);
        tree.root.left.left = new Node(13);
        tree.root.left.right = new Node(9);
        tree.root.right.left = new Node(22);
        tree.root.right.right = new Node(7);
        tree.root.right.left.left = new Node(6);
        tree.root.right.left.right = new Node(15);
 
        // 11
        //    /     \
        // 23       44
        //  /  \     /   \
        // 13   9   22     7
        //         / \
        // 6   15
 
        mSum = 0;
 
        getSum(tree.root);
 
        // Print the sum
        System.out.println(mSum);
    }
}


Python3




# Python3 program for the above approach
 
# A binary tree node
class Node:
     
    def __init__(self, x):
         
        self.data = x
        self.left = None
        self.right = None
 
# Stores the desired result
mSum = 0
 
# Function to find the sum of nodes
# with subtree sums of opposite parities
def getSum(root):
     
    global mSum
     
    # Return 0, if node is None
    if (root == None):
        return 0
 
    # Recursively call left and
    # right subtree
    lSum = getSum(root.left)
    rSum = getSum(root.right)
 
    # Update mSum, if one subtree
    # sum is even and another is odd
    if (lSum != 0 and rSum != 0):
        if ((lSum + rSum) % 2 != 0):
            mSum += root.data
 
    # Return the sum of subtree
    return lSum + rSum + root.data
 
# Driver Code
if __name__ == '__main__':
     
    # Given number of nodes
    n = 9
 
    # Binary tree formation
    root = Node(11)
    root.left = Node(23)
    root.right = Node(44)
    root.left.left = Node(13)
    root.left.right = Node(9)
    root.right.left = Node(22)
    root.right.right = Node(7)
    root.right.left.left = Node(6)
    root.right.left.right = Node(15)
 
    #     11
    #   /     \
    #  23       44
    # /  \     /   \
    #13   9   22     7
    #        / \
    #       6   15
 
    mSum = 0
 
    getSum(root)
 
    # Print the sum
    print(mSum)
 
# This code is contributed by mohit kumar 29


C#




// C# program for the above approach
using System;
 
// A binary tree node
public class Node
{
    public int data;
    public Node left, right;
     
    // Constructor
    public Node(int item)
    {
        data = item;
        left = right = null;
    }
}
 
// Binary Tree Class
class BinaryTree{
 
// Stores the desired result
static int mSum;
 
Node root;
 
// Function to find the sum of nodes
// with subtree sums of opposite parities
static int getSum(Node root)
{
     
    // Return 0, if node is null
    if (root == null)
        return 0;
 
    // Recursively call left and
    // right subtree
    int lSum = getSum(root.left);
    int rSum = getSum(root.right);
 
    // Update mSum, if one subtree
    // sum is even and another is odd
    if (lSum != 0 && rSum != 0)
        if ((lSum + rSum) % 2 != 0)
            mSum += root.data;
 
    // Return the sum of subtree
    return lSum + rSum + root.data;
}
 
// Driver Code
public static void Main(String[] args)
{
     
    // Given number of nodes
    //int n = 9;
 
    BinaryTree tree = new BinaryTree();
 
    // Binary tree formation
    tree.root = new Node(11);
    tree.root.left = new Node(23);
    tree.root.right = new Node(44);
    tree.root.left.left = new Node(13);
    tree.root.left.right = new Node(9);
    tree.root.right.left = new Node(22);
    tree.root.right.right = new Node(7);
    tree.root.right.left.left = new Node(6);
    tree.root.right.left.right = new Node(15);
 
    //       11
    //    /     \
    //   23       44
    //  /  \     /   \
    // 13   9   22     7
    //         / \
    //        6   15
    mSum = 0;
 
    getSum(tree.root);
 
    // Print the sum
    Console.WriteLine(mSum);
}
}
 
// This code is contributed by Amit Katiyar


Javascript




<script>
 
// Javascript program for the above approach
 
// A binary tree node
class Node
{
    constructor(item)
    {
        this.left = null;
        this.right = null;
        this.data = item;
    }
}
 
// Stores the desired result
let mSum;
 
let root;
 
class BinaryTree
{
    constructor()
    {
        this.root = null;
    }
}
 
// Function to find the sum of nodes
// with subtree sums of opposite parities
function getSum(root)
{
     
    // Return 0, if node is null
    if (root == null)
        return 0;
 
    // Recursively call left and
    // right subtree
    let lSum = getSum(root.left);
    let rSum = getSum(root.right);
 
    // Update mSum, if one subtree
    // sum is even and another is odd
    if (lSum != 0 && rSum != 0)
        if ((lSum + rSum) % 2 != 0)
            mSum += root.data;
 
    // Return the sum of subtree
    return lSum + rSum + root.data;
}
 
// Driver code
 
// Given number of nodes
let n = 9;
 
let tree = new BinaryTree();
 
// Binary tree formation
tree.root = new Node(11);
tree.root.left = new Node(23);
tree.root.right = new Node(44);
tree.root.left.left = new Node(13);
tree.root.left.right = new Node(9);
tree.root.right.left = new Node(22);
tree.root.right.right = new Node(7);
tree.root.right.left.left = new Node(6);
tree.root.right.left.right = new Node(15);
 
//      11
//    /     \
//   23       44
//  /  \     /   \
// 13   9   22     7
//         / \
//        6   15
 
mSum = 0;
 
getSum(tree.root);
 
// Print the sum
document.write(mSum);
 
// This code is contributed by divyeshrabadiya07
 
</script>


Output: 

33

 

Time Complexity: O(N), where N is the number of nodes in the Binary Tree.
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments