Monday, November 18, 2024
Google search engine
HomeData Modelling & AIReplace every array element with maximum of K next and K previous...

Replace every array element with maximum of K next and K previous elements

Given an array arr, the task is to replace each array element by the maximum of K next and K previous elements.

Example:

Input: arr[] = {12, 5, 3, 9, 21, 36, 17}, K=2
Output: 5 12 21 36 36 21 36

Input: arr[] = { 13, 21, 19}, K=1
Output: 21, 19, 21 

 

Naive Approach: Follow the below steps to solve this problem:

  1. Traverse the array from i=0 to i<N and for each element:
    • Run another loop from j=i-K to j<=i+K, and change arr[i] to the maximum of K next and K previous elements.
  2. Print the array after the above loop ends.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <iostream>
#include <limits.h>
#include <math.h>
using namespace std;
 
// Function to update the array
// arr[i] = maximum of prev K and next K elements.
void updateArray(int arr[], int N, int K)
{
 
    int start, end;
    for (int i = 0; i < N; i++) {
        int mx = INT_MIN;
 
        // Start limit is max(i-K, 0)
        start = max(i - K, 0);
 
        // End limit in min(i+K, N-1)
        end = min(i + K, N - 1);
        for (int j = start; j <= end; j++) {
 
            // Skipping the current element
            if (j == i) {
                continue;
            }
            mx = max(arr[j], mx);
        }
 
        cout << mx << ' ';
    }
}
 
// Driver Code
int main()
{
    int arr[] = { 12, 5, 3, 9, 21, 36, 17 };
    int N = sizeof(arr) / sizeof(arr[0]);
    int K = 2;
 
    updateArray(arr, N, K);
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG{
     
// Function to update the array arr[i] = maximum
// of prev K and next K elements.
static void updateArray(int arr[], int N, int K)
{
    int start, end;
    for(int i = 0; i < N; i++)
    {
        int mx = Integer.MIN_VALUE;
 
        // Start limit is max(i-K, 0)
        start = Math.max(i - K, 0);
 
        // End limit in min(i+K, N-1)
        end = Math.min(i + K, N - 1);
        for(int j = start; j <= end; j++)
        {
             
            // Skipping the current element
            if (j == i)
            {
                continue;
            }
            mx = Math.max(arr[j], mx);
        }
        System.out.print(mx + " ");
    }
}
 
// Driver Code
public static void main(String args[])
{
    int arr[] = { 12, 5, 3, 9, 21, 36, 17 };
    int N = arr.length;
    int K = 2;
 
    updateArray(arr, N, K);
}
}
 
// This code is contributed by Samim Hossain Mondal.


Python3




# python3 program for the above approach
INT_MIN = -2147483648
 
# Function to update the array
# arr[i] = maximum of prev K and next K elements.
def updateArray(arr, N, K):
 
    for i in range(0, N):
        mx = INT_MIN
 
        # Start limit is max(i-K, 0)
        start = max(i - K, 0)
 
        # End limit in min(i+K, N-1)
        end = min(i + K, N - 1)
        for j in range(start, end + 1):
 
            # Skipping the current element
            if (j == i):
                continue
            mx = max(arr[j], mx)
        print(mx, end=" ")
 
# Driver Code
if __name__ == "__main__":
 
    arr = [12, 5, 3, 9, 21, 36, 17]
    N = len(arr)
    K = 2
 
    updateArray(arr, N, K)
 
# This code is contributed by rakeshsahni


C#




// C# program for the above approach
using System;
class GFG
{
 
  // Function to update the array arr[i] = maximum
  // of prev K and next K elements.
  static void updateArray(int[] arr, int N, int K)
  {
    int start, end;
    for (int i = 0; i < N; i++)
    {
      int mx = int.MinValue;
 
      // Start limit is max(i-K, 0)
      start = Math.Max(i - K, 0);
 
      // End limit in min(i+K, N-1)
      end = Math.Min(i + K, N - 1);
      for (int j = start; j <= end; j++)
      {
 
        // Skipping the current element
        if (j == i)
        {
          continue;
        }
        mx = Math.Max(arr[j], mx);
      }
      Console.Write(mx + " ");
    }
  }
 
  // Driver Code
  public static void Main()
  {
    int[] arr = { 12, 5, 3, 9, 21, 36, 17 };
    int N = arr.Length;
    int K = 2;
 
    updateArray(arr, N, K);
  }
}
 
// This code is contributed by Saurabh Jaiswal


Javascript




<script>
       // JavaScript code for the above approach
 
       // Function to update the array
       // arr[i] = maximum of prev K and next K elements.
       function updateArray(arr, N, K) {
 
           let start, end;
           for (let i = 0; i < N; i++) {
               let mx = Number.MIN_VALUE;
 
               // Start limit is max(i-K, 0)
               start = Math.max(i - K, 0);
 
               // End limit in min(i+K, N-1)
               end = Math.min(i + K, N - 1);
               for (let j = start; j <= end; j++) {
 
                   // Skipping the current element
                   if (j == i) {
                       continue;
                   }
                   mx = Math.max(arr[j], mx);
               }
 
               document.write(mx + ' ')
           }
       }
 
       // Driver Code
       let arr = [12, 5, 3, 9, 21, 36, 17];
       let N = arr.length;
       let K = 2;
 
       updateArray(arr, N, K);
 
 // This code is contributed by Potta Lokesh
   </script>


Output

5 12 21 36 36 21 36 

Time Complexity: O(N*N)
Auxiliary Space: O(1)

Efficient Approach: A segment tree can be used to solve this problem. So, construct a range max segment tree, where:

  • Leaf Nodes are the elements of the input array.
  • Each internal node represents the maximum of all of its children.

Now, after building the segment tree, find the maximum from (i-K) to (i-1), say left and the maximum of (i+1) to (i+K), say right using query on this segment tree. Replace arr[i] with the maximum of left and right.

Below is the implementation of the above approach:

C++




// C++ code for the above approach
 
#define MAXN 500001
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to build the tree
void buildTree(vector<int>& arr,
               vector<int>& tree, int s,
               int e, int index)
{
 
    // Leaf Node
    if (s == e) {
        tree[index] = arr[s];
        return;
    }
 
    // Finding mid
    int mid = (s + e) / 2;
 
    buildTree(arr, tree, s,
              mid, 2 * index + 1);
    buildTree(arr, tree, mid + 1,
              e, 2 * index + 2);
 
    // Updating current node
    // by the maximum of its children
    tree[index]
        = max(tree[2 * index + 1],
              tree[2 * index + 2]);
}
 
// Function to find the maximum
// element in a given range
int query(vector<int>& tree, int s,
          int e, int index, int l,
          int r)
{
 
    if (l > e or r < s) {
        return INT_MIN;
    }
 
    if (l <= s and r >= e) {
        return tree[index];
    }
 
    int mid = (s + e) / 2;
 
    int left = query(tree, s, mid,
                     2 * index + 1, l, r);
    int right
        = query(tree, mid + 1, e,
                2 * index + 2, l, r);
 
    return max(left, right);
}
 
// Function to replace each array element by
// the maximum of K next and K previous elements
void updateArray(vector<int>& arr, int K)
{
 
    // To store the segment tree
    vector<int> tree(MAXN);
 
    int N = arr.size();
    buildTree(arr, tree, 0, N - 1, 0);
 
    for (int i = 0; i < N; ++i) {
        // For 0th index only find
        // the maximum out of 1 to i+K
        if (i == 0) {
            cout << query(tree, 0, N - 1, 0, 1,
                          min(i + K, N - 1))
                 << ' ';
            continue;
        }
 
        // For (N-1)th index only find
        // the maximum out of 0 to (N-2)
        if (i == N - 1) {
            cout << query(tree, 0, N - 1,
                          0, max(0, i - K),
                          N - 2);
            continue;
        }
 
        // Maximum from (i-K) to (i-1)
        int left = query(tree, 0, N - 1,
                         0, max(i - K, 0),
                         i - 1);
 
        // Maximum from (i+1) to (i+K)
        int right = query(tree, 0,
                          N - 1, 0, i + 1,
                          min(i + K, N - 1));
 
        cout << max(left, right) << ' ';
    }
}
 
// Driver Code
int main()
{
    vector<int> arr = { 12, 5, 3, 9,
                        21, 36, 17 };
    int K = 2;
 
    updateArray(arr, K);
}


Java




// Java code for the above approach
import java.io.*;
class GFG {
 
  static int MAXN = 500001;
 
  // Function to build the tree
  static void buildTree(int[] arr, int[] tree, int s,
                        int e, int index)
  {
 
    // Leaf Node
    if (s == e) {
      tree[index] = arr[s];
      return;
    }
 
    // Finding mid
    int mid = (s + e) / 2;
 
    buildTree(arr, tree, s, mid, 2 * index + 1);
    buildTree(arr, tree, mid + 1, e, 2 * index + 2);
 
    // Updating current node
    // by the maximum of its children
    tree[index] = Math.max(tree[2 * index + 1],
                           tree[2 * index + 2]);
  }
 
  // Function to find the maximum
  // element in a given range
  static int query(int[] tree, int s, int e, int index,
                   int l, int r)
  {
 
    if (l > e || r < s) {
      return Integer.MIN_VALUE;
    }
 
    if (l <= s && r >= e) {
      return tree[index];
    }
 
    int mid = (s + e) / 2;
 
    int left = query(tree, s, mid, 2 * index + 1, l, r);
    int right
      = query(tree, mid + 1, e, 2 * index + 2, l, r);
 
    return Math.max(left, right);
  }
 
  // Function to replace each array element by
  // the maximum of K next and K previous elements
  static void updateArray(int[] arr, int K)
  {
 
    // To store the segment tree
    int[] tree = new int[MAXN];
 
    int N = arr.length;
    buildTree(arr, tree, 0, N - 1, 0);
 
    for (int i = 0; i < N; ++i)
    {
 
      // For 0th index only find
      // the maximum out of 1 to i+K
      if (i == 0) {
        System.out.print(query(tree, 0, N - 1, 0, 1,
                               Math.min(i + K, N - 1))
                         + " ");
        continue;
      }
 
      // For (N-1)th index only find
      // the maximum out of 0 to (N-2)
      if (i == N - 1) {
        System.out.println(query(tree, 0, N - 1, 0,
                                 Math.max(0, i - K),
                                 N - 2));
        continue;
      }
 
      // Maximum from (i-K) to (i-1)
      int left = query(tree, 0, N - 1, 0,
                       Math.max(i - K, 0), i - 1);
 
      // Maximum from (i+1) to (i+K)
      int right = query(tree, 0, N - 1, 0, i + 1,
                        Math.min(i + K, N - 1));
 
      System.out.print(Math.max(left, right) + " ");
    }
  }
 
  // Driver Code
  public static void main (String[] args)
  {
    int[] arr = { 12, 5, 3, 9, 21, 36, 17 };
    int K = 2;
 
    updateArray(arr, K);
  }
}
 
// This code is contributed by Shubham Singh.


Python3




# Python code for the above approach
import sys
 
MAXN = 500001
 
# Function to build the tree
def buildTree(arr, tree, s, e, index):
 
    # Leaf Node
    if (s == e):
        tree[index] = arr[s]
        return
 
    # Finding mid
    mid = (s + e) // 2
 
    buildTree(arr, tree, s, mid, 2 * index + 1)
    buildTree(arr, tree, mid + 1, e, 2 * index + 2)
 
    # Updating current node
    # by the maximum of its children
    tree[index] = max(tree[2 * index + 1], tree[2 * index + 2])
 
# Function to find the maximum
# element in a given range
def query(tree, s, e, index, l, r):
 
    if (l > e or r < s):
        return -sys.maxsize -1
 
    if (l <= s and r >= e):
        return tree[index]
 
    mid = (s + e) // 2
 
    left = query(tree, s, mid,2 * index + 1, l, r)
    right = query(tree, mid + 1, e, 2 * index + 2, l, r)
 
    return max(left, right)
 
# Function to replace each array element by
# the maximum of K next and K previous elements
def updateArray(arr, K):
 
    global MAXN
    # To store the segment tree
    tree = [0 for i in range(MAXN)]
 
    N = len(arr)
    buildTree(arr, tree, 0, N - 1, 0)
 
    for i in range(N):
        # For 0th index only find
        # the maximum out of 1 to i+K
        if (i == 0):
            print(query(tree, 0, N - 1, 0, 1, min(i + K, N - 1)),end = ' ')
            continue
 
        # For (N-1)th index only find
        # the maximum out of 0 to (N-2)
        if (i == N - 1):
            print(query(tree, 0, N - 1, 0, max(0, i - K), N - 2))
            continue
 
        # Maximum from (i-K) to (i-1)
        left = query(tree, 0, N - 1, 0, max(i - K, 0), i - 1)
 
        # Maximum from (i+1) to (i+K)
        right = query(tree, 0, N - 1, 0, i + 1, min(i + K, N - 1))
 
        print(max(left, right),end = ' ')
 
# Driver Code
arr = [12, 5, 3, 9, 21, 36, 17]
K = 2
 
updateArray(arr, K)
 
# This code is contributed by shinjanpatra


C#




// C# code for the above approach
using System;
class GFG {
 
  static int MAXN = 500001;
 
  // Function to build the tree
  static void buildTree(int[] arr, int[] tree, int s,
                        int e, int index)
  {
 
    // Leaf Node
    if (s == e) {
      tree[index] = arr[s];
      return;
    }
 
    // Finding mid
    int mid = (s + e) / 2;
 
    buildTree(arr, tree, s, mid, 2 * index + 1);
    buildTree(arr, tree, mid + 1, e, 2 * index + 2);
 
    // Updating current node
    // by the maximum of its children
    tree[index] = Math.Max(tree[2 * index + 1],
                           tree[2 * index + 2]);
  }
 
  // Function to find the maximum
  // element in a given range
  static int query(int[] tree, int s, int e, int index,
                   int l, int r)
  {
 
    if (l > e || r < s) {
      return Int32.MinValue;
    }
 
    if (l <= s && r >= e) {
      return tree[index];
    }
 
    int mid = (s + e) / 2;
 
    int left = query(tree, s, mid, 2 * index + 1, l, r);
    int right
      = query(tree, mid + 1, e, 2 * index + 2, l, r);
 
    return Math.Max(left, right);
  }
 
  // Function to replace each array element by
  // the maximum of K next and K previous elements
  static void updateArray(int[] arr, int K)
  {
 
    // To store the segment tree
    int[] tree = new int[MAXN];
 
    int N = arr.Length;
    buildTree(arr, tree, 0, N - 1, 0);
 
    for (int i = 0; i < N; ++i) {
      // For 0th index only find
      // the maximum out of 1 to i+K
      if (i == 0) {
        Console.Write(query(tree, 0, N - 1, 0, 1,
                            Math.Min(i + K, N - 1))
                      + " ");
        continue;
      }
 
      // For (N-1)th index only find
      // the maximum out of 0 to (N-2)
      if (i == N - 1) {
        Console.Write(query(tree, 0, N - 1, 0,
                            Math.Max(0, i - K),
                            N - 2));
        continue;
      }
 
      // Maximum from (i-K) to (i-1)
      int left = query(tree, 0, N - 1, 0,
                       Math.Max(i - K, 0), i - 1);
 
      // Maximum from (i+1) to (i+K)
      int right = query(tree, 0, N - 1, 0, i + 1,
                        Math.Min(i + K, N - 1));
 
      Console.Write(Math.Max(left, right) + " ");
    }
  }
 
  // Driver Code
  public static void Main()
  {
    int[] arr = { 12, 5, 3, 9, 21, 36, 17 };
    int K = 2;
 
    updateArray(arr, K);
  }
}
 
// This code is contributed by ukasp.


Javascript




<script>
// Javascript code for the above approach
 
let MAXN = 500001
 
// Function to build the tree
function buildTree(arr, tree, s, e, index) {
 
    // Leaf Node
    if (s == e) {
        tree[index] = arr[s];
        return;
    }
 
    // Finding mid
    let mid = Math.floor((s + e) / 2);
 
    buildTree(arr, tree, s, mid, 2 * index + 1);
    buildTree(arr, tree, mid + 1, e, 2 * index + 2);
 
    // Updating current node
    // by the maximum of its children
    tree[index] = Math.max(tree[2 * index + 1], tree[2 * index + 2]);
}
 
// Function to find the maximum
// element in a given range
function query(tree, s, e, index, l, r) {
 
    if (l > e || r < s) {
        return Number.MIN_SAFE_INTEGER;
    }
 
    if (l <= s && r >= e) {
        return tree[index];
    }
 
    let mid = Math.floor((s + e) / 2);
 
    let left = query(tree, s, mid,
        2 * index + 1, l, r);
    let right = query(tree, mid + 1, e, 2 * index + 2, l, r);
 
    return Math.max(left, right);
}
 
// Function to replace each array element by
// the maximum of K next and K previous elements
function updateArray(arr, K) {
 
    // To store the segment tree
    let tree = new Array(MAXN).fill(0);
 
    let N = arr.length;
    buildTree(arr, tree, 0, N - 1, 0);
 
    for (let i = 0; i < N; ++i) {
        // For 0th index only find
        // the maximum out of 1 to i+K
        if (i == 0) {
            document.write(query(tree, 0, N - 1, 0, 1, Math.min(i + K, N - 1)) + ' ');
            continue;
        }
 
        // For (N-1)th index only find
        // the maximum out of 0 to (N-2)
        if (i == N - 1) {
            document.write(query(tree, 0, N - 1, 0, Math.max(0, i - K), N - 2));
            continue;
        }
 
        // Maximum from (i-K) to (i-1)
        let left = query(tree, 0, N - 1, 0, Math.max(i - K, 0), i - 1);
 
        // Maximum from (i+1) to (i+K)
        let right = query(tree, 0, N - 1, 0, i + 1, Math.min(i + K, N - 1));
 
        document.write(Math.max(left, right) + ' ');
    }
}
 
// Driver Code
let arr = [12, 5, 3, 9, 21, 36, 17];
let K = 2;
 
updateArray(arr, K);
 
// This code is contributed by saurabh_jaiswal.
</script>


Output

5 12 21 36 36 21 36

Time Complexity: O(NlogN)
Auxiliary Space: O(MAXN)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments