Saturday, November 16, 2024
Google search engine
HomeData Modelling & AIRearrange a string to maximize the minimum distance between any pair of...

Rearrange a string to maximize the minimum distance between any pair of vowels

Given a string str, the task is to rearrange the characters of the given string such that the minimum distance between any pair of vowels is maximum possible.

Examples:

Input: str = “aacbbc”
Output: abcbca
Explanation: Maximized distance between the only pair of vowels is 4.

Input: str = “aaaabbbcc”
Output: ababacbac

Approach: Follow the below steps to solve the problem:

  • Iterate over the characters of the string and count the number of vowels and consonants present in the string str, say Nv and Nc respectively.
  • Now, calculate the maximum number of consonants that can be put between every pair of vowels using the following formula:
     

M = rounded down[Nc / (Nv – 1)]

  • Now, construct the resultant string by placing all vowels and then inserting M consonants between each adjacent vowel of the pair.
  • After constructing the resultant string, if any consonant is still remaining, then simply insert them at the end of the string.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to rearrange the string
// such that the minimum distance
// between any of vowels is maximum.
string solution(string s)
{
 
    // Store vowels and consonants
    vector<char> vowel, consonant;
 
    // Iterate over the characters
    // of string
    for (auto i : s) {
 
        // If current character is a vowel
        if (i == 'a' || i == 'e'
            || i == 'i' || i == 'o'
            || i == 'u') {
 
            vowel.push_back(i);
        }
 
        // If current character is
        // a consonant
        else {
 
            consonant.push_back(i);
        }
    }
 
    // Stores count of vowels and
    // consonants respectively
    int Nc, Nv;
    Nv = vowel.size();
    Nc = consonant.size();
 
    int M = Nc / (Nv - 1);
 
    // Stores the resultant string
    string ans = "";
 
    // Stores count of consonants
    // appended into ans
    int consotnant_till = 0;
 
    for (auto i : vowel) {
 
        // Append vowel to ans
        ans += i;
        int temp = 0;
 
        // Append consonants
        for (int j = consotnant_till;
             j < min(Nc, consotnant_till + M);
             j++) {
 
            // Append consonant to ans
            ans += consonant[j];
 
            // Update temp
            temp++;
        }
 
        // Remove the taken
        // elements of consonant
        consotnant_till += temp;
    }
 
    // Return final ans
    return ans;
}
 
// Driver Code
int main()
{
    string str = "aaaabbbcc";
 
    // Function Call
    cout << solution(str);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
class GFG
{
 
// Function to rearrange the String
// such that the minimum distance
// between any of vowels is maximum.
static String solution(String s)
{
 
    // Store vowels and consonants
    Vector<Character> vowel = new Vector<Character>();
    Vector<Character> consonant = new Vector<Character>();
 
    // Iterate over the characters
    // of String
    for (char i : s.toCharArray())
    {
 
        // If current character is a vowel
        if (i == 'a' || i == 'e'
            || i == 'i' || i == 'o'
            || i == 'u')
        {
 
            vowel.add(i);
        }
 
        // If current character is
        // a consonant
        else
        {
 
            consonant.add(i);
        }
    }
 
    // Stores count of vowels and
    // consonants respectively
    int Nc, Nv;
    Nv = vowel.size();
    Nc = consonant.size();
    int M = Nc / (Nv - 1);
 
    // Stores the resultant String
    String ans = "";
 
    // Stores count of consonants
    // appended into ans
    int consotnant_till = 0;
    for (char i : vowel)
    {
 
        // Append vowel to ans
        ans += i;
        int temp = 0;
 
        // Append consonants
        for (int j = consotnant_till;
             j < Math.min(Nc, consotnant_till + M);
             j++) {
 
            // Append consonant to ans
            ans += consonant.get(j);
 
            // Update temp
            temp++;
        }
 
        // Remove the taken
        // elements of consonant
        consotnant_till += temp;
    }
 
    // Return final ans
    return ans;
}
 
// Driver Code
public static void main(String[] args)
{
    String str = "aaaabbbcc";
 
    // Function Call
    System.out.print(solution(str));
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python Program for the above approach
 
# Function to rearrange the string
# such that the minimum distance
# between any of vowels is maximum.
def solution(S):
   
    # store vowels and consonants
    vowels = []
    consonants = []
     
    # Iterate over the
    # characters of string
    for i in S:
       
        # if current character is a vowel
        if (i == 'a' or i == 'e' or i == 'i' or i == 'o' or i == 'u'):
            vowels.append(i)
             
        # if current character is consonant
        else:
            consonants.append(i)
             
    # store count of vowels and
    # consonants respectively
    Nc = len(consonants)
    Nv = len(vowels)
    M = Nc // (Nv - 1)
 
    # store the resultant string
    ans = ""
 
    # store count of consonants
    # append into ans
    consonant_till = 0
      
    for i in vowels:
        # Append vowel to ans
        ans += i
        temp = 0
 
        # Append consonants
        for j in range(consonant_till, min(Nc, consonant_till + M)):
           
            # Appendconsonant to ans
            ans += consonants[j]
             
            # update temp
            temp += 1
             
        # Remove the taken
        # elements of consonant
        consonant_till += temp
     
    # return final answer
    return ans
 
# Driver code
S = "aaaabbbcc"
print(solution(S))
 
# This code is contributed by Virusbuddah


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
class GFG
{
 
// Function to rearrange the String
// such that the minimum distance
// between any of vowels is maximum.
static String solution(string s)
{
 
    // Store vowels and consonants
    List<char> vowel = new List<char>();
    List<char> consonant = new List<char>();
 
    // Iterate over the characters
    // of String
    foreach (char i in s.ToCharArray())
    {
 
        // If current character is a vowel
        if (i == 'a' || i == 'e'
            || i == 'i' || i == 'o'
            || i == 'u')
        {
 
            vowel.Add(i);
        }
 
        // If current character is
        // a consonant
        else
        {
 
            consonant.Add(i);
        }
    }
 
    // Stores count of vowels and
    // consonants respectively
    int Nc, Nv;
    Nv = vowel.Count;
    Nc = consonant.Count;
    int M = Nc / (Nv - 1);
 
    // Stores the resultant String
    string ans = "";
 
    // Stores count of consonants
    // appended into ans
    int consotnant_till = 0;
    foreach (char i in vowel)
    {
 
        // Append vowel to ans
        ans += i;
        int temp = 0;
 
        // Append consonants
        for (int j = consotnant_till;
             j < Math.Min(Nc, consotnant_till + M);
             j++) {
 
            // Append consonant to ans
            ans += consonant[j];
 
            // Update temp
            temp++;
        }
 
        // Remove the taken
        // elements of consonant
        consotnant_till += temp;
    }
 
    // Return final ans
    return ans;
}
 
// Driver Code
static public void Main()
{
    String str = "aaaabbbcc";
 
    // Function Call
    Console.WriteLine(solution(str));
    }
}
 
// This code is contributed by sanjoy_62.


Javascript




<script>
 
// JavaScript program for the above approach
 
// Function to rearrange the string
// such that the minimum distance
// between any of vowels is maximum.
function solution(s)
{
 
    // Store vowels and consonants
    var vowel = [], consonant = [];
 
    // Iterate over the characters
    // of string
    s.split('').forEach(i => {
     
 
        // If current character is a vowel
        if (i == 'a' || i == 'e'
            || i == 'i' || i == 'o'
            || i == 'u') {
 
            vowel.push(i);
        }
 
        // If current character is
        // a consonant
        else {
 
            consonant.push(i);
        }
    });
 
    // Stores count of vowels and
    // consonants respectively
    var Nc, Nv;
    Nv = vowel.length;
    Nc = consonant.length;
 
    var M = parseInt(Nc / (Nv - 1));
 
    // Stores the resultant string
    var ans = "";
 
    // Stores count of consonants
    // appended into ans
    var consotnant_till = 0;
 
    vowel.forEach(i => {
 
        // Append vowel to ans
        ans += i;
        var temp = 0;
 
        // Append consonants
        for (var j = consotnant_till;
             j < Math.min(Nc, consotnant_till + M);
             j++) {
 
            // Append consonant to ans
            ans += consonant[j];
 
            // Update temp
            temp++;
        }
 
        // Remove the taken
        // elements of consonant
        consotnant_till += temp;
    });
 
    // Return final ans
    return ans;
}
 
// Driver Code
 
var str = "aaaabbbcc";
 
// Function Call
document.write( solution(str));
 
</script>


Output: 

abababac

 

Time Complexity: O(N)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments