Saturday, November 2, 2024
Google search engine
HomeData Modelling & AIReach A and B by multiplying them with K and K^2 at...

Reach A and B by multiplying them with K and K^2 at every step

We are given two numbers A and B, we need to write a program to determine if A and B can be reached starting from (1, 1) following the given steps. Start from (1, 1) and at every step choose a random number K and multiply K to any one of the two numbers obtained in the previous step and K2 to the other number. 
Examples: 

Input: A = 3,   B = 9 
Output: yes
Explanation: Starting from A = 1 and B = 1. 
We choose k=3 and multiply 3 with the first number to get A=3 and multiply k2=9 to the second-number to get B=9. 

Input: A = 60,   B = 450 
Output: yes
Explanation : Starting from A = 1 and B = 1,
Step 1: multiply k=3 and k2 to get 3 and 9 
Step 2: Multiply k=5 and k2 = 25 to get to 15 and 225 
Step 3: Multiply k2=4 and k=2 to get to A=60 and B=450 

 

The idea to solve this problem is to observe closely that at each step we are multiplying k and k2 to the numbers. So if A and B can be reached, it will have k^3 at every step as factors in A*B. In simple words, if the number A*B is a perfect cube and it divides A and B both, only then the number can be reached starting from 1 and 1 by performing given steps. 

Below is the implementation of above idea: 

C++




// CPP program to determine if
// A and B can be reached starting
// from 1, 1 following the given steps.
#include <bits/stdc++.h>
using namespace std;
  
// function to check is it is possible to reach
// A and B starting from 1 and 1
bool possibleToReach(int a, int b)
{
    // find the cuberoot of the number
    int c = cbrt(a * b);
  
    // divide the number by cuberoot
    int re1 = a / c;
    int re2 = b / c;
  
    // if it is a perfect cuberoot and divides a and b
    if ((re1 * re1 * re2 == a) && (re2 * re2 * re1 == b))
        return true;
    else
        return false;
}
  
int main()
{
    int A = 60, B = 450;
  
    if (possibleToReach(A, B))
        cout << "yes";
    else
        cout << "no";
  
    return 0;
}


Java




// Java program to determine if
// A and B can be reached starting
// from 1, 1 following the given 
// steps.
class GFG {
      
    // function to check is it is 
    // possible to reach A and B 
    // starting from 1 and 1
    static boolean possibleToReach(int a, int b)
    {
          
        // find the cuberoot of the number
        int c = (int)Math.cbrt(a * b);
  
        // divide the number by cuberoot
        int re1 = a / c;
        int re2 = b / c;
  
        // if it is a perfect cuberoot and 
        // divides a and b
        if ((re1 * re1 * re2 == a) && 
                         (re2 * re2 * re1 == b))
            return true;
        else
            return false;
    }
  
    // Driver code
    public static void main(String[] args)
    {
        int A = 60, B = 450;
  
        if (possibleToReach(A, B))
            System.out.println("yes");
        else
            System.out.println("no");
    }
}
  
// This code is contributed by
// Smitha Dinesh Semwal


Python 3




# Python 3 program to determine if
# A and B can be reached starting
# from 1, 1 following the given steps.
import numpy as np
  
# function to check is it is possible to 
# reach A and B starting from 1 and 1
def possibleToReach(a, b):
  
    # find the cuberoot of the number
    c = np.cbrt(a * b)
  
    # divide the number by cuberoot
    re1 = a // c
    re2 = b // c
  
    # if it is a perfect cuberoot and
    # divides a and b
    if ((re1 * re1 * re2 == a) and 
        (re2 * re2 * re1 == b)):
        return True
    else:
        return False
  
# Driver Code
if __name__ == "__main__":
      
    A = 60
    B = 450
  
    if (possibleToReach(A, B)):
        print("yes")
    else:
        print("no")
  
# This code is contributed by ita_c


C#




// C# program to determine if
// A and B can be reached starting
// from 1, 1 following the given 
// steps.
using System;
  
public class GFG{
      
    // function to check is it is 
    // possible to reach A and B 
    // starting from 1 and 1
    public static bool possibleToReach(int a, int b)
    {
          
        // find the cuberoot of the number
        int c = (int)Math.Pow(a * b, (double) 1 / 3);
        // divide the number by cuberoot
        int re1 = a / c;
        int re2 = b / c;
  
        // if it is a perfect cuberoot  
        // and divides a and b
        if ((re1 * re1 * re2 == a) && 
              (re2 * re2 * re1 == b))
            return true;
        else
            return false;
    }
  
// Driver Code 
    static public void Main (String []args)
    {
          
        int A = 60, B = 450;
  
        if (possibleToReach(A, B))
            Console.WriteLine("Yes");
        else
            Console.WriteLine("No");
    }
}
  
// This code is contributed by Ajit.


PHP




<?php
// PHP program to determine if
// A and B can be reached starting
// from 1, 1 following the given steps.
  
// function to check is it is
// possible to reach A and B 
// starting from 1 and 1
function possibleToReach($a, $b)
{
      
    // find the cuberoot
    // of the number
    $c =($a * $b);
  
    // divide the number
    // by cuberoot
    $re1 = $a / $c;
    $re2 = $b / $c;
  
    // if it is a perfect cuberoot
    // and divides a and b
    if (($re1 * $re1 * $re2 == $a) && 
        ($re2 * $re2 * $re1 == $b))
        return 1;
    else
        return -1;
}
  
    // Driver Code
    $A = 60; 
    $B = 450;
    if (possibleToReach($A, $B))
        echo "yes";
    else
        echo "no";
          
// This code is contributed by aj_36
?>


Javascript




<script>
  
// JavaScript program to determine if
// A and B can be reached starting
// from 1, 1 following the given steps.
  
    // function to check is it is 
    // possible to reach A and B 
    // starting from 1 and 1
    function possibleToReach(a, b)
    {
            
        // find the cuberoot of the number
        let c = Math.cbrt(a * b);
    
        // divide the number by cuberoot
        let re1 = a / c;
        let re2 = b / c;
    
        // if it is a perfect cuberoot and 
        // divides a and b
        if ((re1 * re1 * re2 == a) && 
                         (re2 * re2 * re1 == b))
            return true;
        else
            return false;
    }
  
// Driver code
  
        let A = 60, B = 450;
    
        if (possibleToReach(A, B))
            document.write("Yes");
        else
            document.write("No");
  
// This code is contributed by splevel62.
</script>


Output

yes

Time complexity: O(log(A*B)) for given A and B, as it is using cbrt function
Auxiliary space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
20 Feb, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments