Monday, November 18, 2024
Google search engine
HomeData Modelling & AIProgram to find the side of the Octagon inscribed within the square

Program to find the side of the Octagon inscribed within the square

Given a square of side length ‘a’, the task is to find the side length of the biggest octagon that can be inscribed within it.

Examples: 

Input: a = 4
Output: 1.65685

Input: a = 5
Output: 2.07107

Approach:

=> From the figure, it can be seen that, side length of the Octagon = b 
=> Also since the polygons are regular, therefore 2*x + b = a 
=> From the right angled triangle, x^2 + x^2 = b^2
=> Hence, x = b/?2, 
=> So, ?2b + b = a
=> Therefore, b = a/(?2 +1) 

Below is the implementation of the above approach:  

C++




// C++ Program to find the side of the octagon
// which can be inscribed within the square
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the side
// of the octagon
float octaside(float a)
{
 
    // side cannot be negative
    if (a < 0)
        return -1;
 
    // side of the octagon
    float s = a / (sqrt(2) + 1);
    return s;
}
 
// Driver code
int main()
{
 
    // Get he square side
    float a = 4;
 
    // Find the side length of the square
    cout << octaside(a) << endl;
 
    return 0;
}


Java




// Java Program to find the side of the octagon
// which can be inscribed within the square
 
import java.io.*;
 
class GFG {
     
// Function to find the side
// of the octagon
static double octaside(double a)
{
 
    // side cannot be negative
    if (a < 0)
        return -1;
 
    // side of the octagon
    double s = a / (Math.sqrt(2) + 1);
    return s;
}
 
// Driver code
     
    public static void main (String[] args) {
         
    // Get he square side
    double a = 4;
 
    // Find the side length of the square
    System.out.println( octaside(a));
 
         
         
    }
}
//This Code  is contributed by ajit


Python3




# Python 3 Program to find the side
# of the octagon which can be
# inscribed within the square
from math import sqrt
 
# Function to find the side
# of the octagon
def octaside(a):
     
    # side cannot be negative
    if a < 0:
        return -1
 
    # side of the octagon
    s = a / (sqrt(2) + 1)
    return s
 
# Driver code
if __name__ == '__main__':
     
    # Get he square side
    a = 4
 
    # Find the side length of the square
    print("{0:.6}".format(octaside(a)))
     
# This code is contributed
# by Surendra_Gangwar


C#




// C# Program to find the side
// of the octagon which can be
// inscribed within the square
using System;
 
class GFG
{
     
// Function to find the side
// of the octagon
static double octaside(double a)
{
 
    // side cannot be negative
    if (a < 0)
        return -1;
 
    // side of the octagon
    double s = a / (Math.Sqrt(2) + 1);
    return s;
}
 
// Driver code
static public void Main ()
{
    // Get he square side
    double a = 4;
     
    // Find the side length
    // of the square
    Console.WriteLine( octaside(a));
}
}
 
// This code is contributed
// by akt_mit


PHP




<?php
// PHP  Program to find the side of the octagon
// which can be inscribed within the square
 
// Function to find the side
// of the octagon
function octaside($a)
{
 
    // side cannot be negative
    if ($a < 0)
        return -1;
 
    // side of the octagon
     $s = $a / (sqrt(2) + 1);
    return $s;
}
 
// Driver code
 
    // Get he square side
    $a = 4;
 
    // Find the side length of the square
    echo  octaside($a);
 
// This code is contributed by ajit
?>


Javascript




<script>
// javascript Program to find the side of the octagon
// which can be inscribed within the square
 
// Function to find the side
// of the octagon
function octaside(a)
{
 
    // side cannot be negative
    if (a < 0)
        return -1;
 
    // side of the octagon
    var s = a / (Math.sqrt(2) + 1);
    return s;
}
 
// Driver code
 
// Get he square side
var a = 4;
 
// Find the side length of the square
document.write( octaside(a).toFixed(5));
 
// This code is contributed by shikhasingrajput
</script>


Output: 

1.65685

 

Time Complexity: O(1)  since no loop is used the algorithm takes up constant time to perform the operations

Space Complexity: O(1) since no extra array is used so the space taken by the algorithm is constant

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments