Wednesday, November 20, 2024
Google search engine
HomeData Modelling & AIProgram to find Area of Triangle inscribed in N-sided Regular Polygon

Program to find Area of Triangle inscribed in N-sided Regular Polygon

Given the triangle inscribed in an N-sided regular polygon with given side length, formed using any 3 vertices of the polygon, the task is to find the area of this triangle. 
Examples: 
 

Input: N = 6, side = 10
Output: 129.904

Input: N = 8, side = 5
Output: 45.2665

 

Approach: Consider the 1st example: 
 

  • Given is a 6 sided regular polygon ABCDEF with a triangle AEC inscribed in it.
  • As it can be seen, the triangle divides given polygon into 6 equal triangular areas, where the point of intersection of triangle AEC is the centroid of the triangle.
     

  • Find the area of the regular polygon. Area of the regular polygon can be calculated with the help of formula (A*P)/2 where P is the perimeter of that polygon and A is apothem of that polygon.
  • Area of each of the triangulated part will be (TriangulatedArea = Area of N sided regular polygon / N) from the law of symmetry.
  • Since the Triangle ACE comprises of 3 out of 6 in it, So the area of triangle ACE will be (3 * TriangulatedArea)
  • Therefore, in general, if there is an N-sided regular polygon with area A, the area of a triangle inscribed in it will be (A/N)*3.

Below is the implementation of the above approach:
 

C++




// C++ Program to find the area of a triangle
// inscribed in N-sided regular polygon
 
#include <bits/stdc++.h>
#include <cmath>
using namespace std;
 
// Function to find the area of the polygon
double area_of_regular_polygon(double n, double len)
{
 
    // area of a regular polygon with N sides
    // and side length len
    double P = (len * n);
    double A
        = len
          / (2 * tan((180 / n)
                     * 3.14159 / 180));
    double area = (P * A) / 2;
 
    return area;
}
 
// Function to find the area of a triangle
double area_of_triangle_inscribed(double n, double len)
{
 
    double area = area_of_regular_polygon(n, len);
 
    // area of one triangle
    // in an N-sided regular polygon
    double triangle = area / n;
 
    // area of inscribed triangle
    double ins_tri = (triangle * 3);
 
    return ins_tri;
}
 
// Driver code
int main()
{
    double n = 6, len = 10;
 
    cout << area_of_triangle_inscribed(n, len)
         << endl;
 
    return 0;
}


Java




// Java Program to find the area of a triangle
// inscribed in N-sided regular polygon
import java.util.*;
 
class GFG
{
 
// Function to find the area of the polygon
static double area_of_regular_polygon(double n,
                                      double len)
{
 
    // area of a regular polygon with N sides
    // and side length len
    double P = (len * n);
    double A = len / (2 * Math.tan((180 / n) *
                             3.14159 / 180));
    double area = (P * A) / 2;
 
    return area;
}
 
// Function to find the area of a triangle
static double area_of_triangle_inscribed(double n,
                                         double len)
{
    double area = area_of_regular_polygon(n, len);
 
    // area of one triangle
    // in an N-sided regular polygon
    double triangle = area / n;
 
    // area of inscribed triangle
    double ins_tri = (triangle * 3);
 
    return ins_tri;
}
 
// Driver code
static public void main(String[] arg)
{
    double n = 6, len = 10;
 
    System.out.printf("%.3f",
           area_of_triangle_inscribed(n, len));
}
}
 
// This code is contributed by PrinciRaj1992


Python3




# Python3 Program to find the area
# of a triangle inscribed in
# N-sided regular polygon
import math
 
# Function to find the area of the polygon
def area_of_regular_polygon(n, len):
 
    # area of a regular polygon with
    # N sides and side length len
    P = (len * n);
    A = len / (2 * math.tan((180 / n) *
                      3.14159 / 180))
    area = (P * A) / 2
 
    return area
 
# Function to find the area of a triangle
def area_of_triangle_inscribed(n, len):
 
    area = area_of_regular_polygon(n, len)
 
    # area of one triangle
    # in an N-sided regular polygon
    triangle = area / n
 
    # area of inscribed triangle
    ins_tri = (triangle * 3);
 
    return ins_tri
 
# Driver code
n = 6
len = 10
print(round(area_of_triangle_inscribed(n, len), 3))
 
# This code is contributed by divyamohan


C#




// C# Program to find the area of a triangle
// inscribed in N-sided regular polygon
using System;
                     
class GFG
{
 
// Function to find the area of the polygon
static double area_of_regular_polygon(double n,
                                      double len)
{
 
    // area of a regular polygon with N sides
    // and side length len
    double P = (len * n);
    double A = len / (2 * Math.Tan((180 / n) *
                             3.14159 / 180));
    double area = (P * A) / 2;
 
    return area;
}
 
// Function to find the area of a triangle
static double area_of_triangle_inscribed(double n,
                                         double len)
{
    double area = area_of_regular_polygon(n, len);
 
    // area of one triangle
    // in an N-sided regular polygon
    double triangle = area / n;
 
    // area of inscribed triangle
    double ins_tri = (triangle * 3);
 
    return ins_tri;
}
 
// Driver code
static public void Main(String[] arg)
{
    double n = 6, len = 10;
 
    Console.Write("{0:F3}",
            area_of_triangle_inscribed(n, len));
}
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
 
// javascript Program to find the area of a triangle
// inscribed in N-sided regular polygon
 
// Function to find the area of the polygon
function area_of_regular_polygon(n, len)
{
 
    // area of a regular polygon with N sides
    // and side length len
    let P = (len * n);
    let A
        = len
          / (2 * Math.tan((180 / n)
                     * 3.14159 / 180));
    let area = (P * A) / 2;
 
    return area;
}
 
// Function to find the area of a triangle
function area_of_triangle_inscribed( n,  len)
{
 
    let area = area_of_regular_polygon(n, len);
 
    // area of one triangle
    // in an N-sided regular polygon
    let triangle = area / n;
 
    // area of inscribed triangle
    let ins_tri = (triangle * 3);
 
    return ins_tri;
}
 
// Driver code
let  n = 6, len = 10;
 
  document.write( area_of_triangle_inscribed(n, len).toFixed(3));
 
 
// This code is contributed by todaysgaurav
 
</script>


Output: 

129.904

 

Time Complexity: O(1), the code will run in a constant time.
Auxiliary Space: O(1), no extra space is required, so it is a constant.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments