Given an integer N, the task is to find the number of cells in Nth order figure of the given type:
Examples:
Input: N = 2
Output: 5
Input: N = 3
Output: 13
Approach: It can be observed that for the values of N = 1, 2, 3, … a series will be formed as 1, 5, 13, 25, 41, 61, 85, 113, 145, 181, … whose Nth term will be N2 + (N – 1)2.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the number // of cells in the nth order // figure of the given type int cntCells( int n) { int cells = pow (n, 2) + pow (n - 1, 2); return cells; } // Driver code int main() { int n = 3; cout << cntCells(n); return 0; } |
Java
// Java implementation of the approach class GFG { // Function to return the number // of cells in the nth order // figure of the given type static int cntCells( int n) { int cells = ( int )Math.pow(n, 2 ) + ( int )Math.pow(n - 1 , 2 ); return cells; } // Driver code public static void main(String[] args) { int n = 3 ; System.out.println(cntCells(n)); } } // This code is contributed by Code_Mech |
Python3
# Python3 implementation of the approach # Function to return the number # of cells in the nth order # figure of the given type def cntCells(n) : cells = pow (n, 2 ) + pow (n - 1 , 2 ); return cells; # Driver code if __name__ = = "__main__" : n = 3 ; print (cntCells(n)); # This code is contributed by AnkitRai01 |
C#
// C# implementation of the approach using System; class GFG { // Function to return the number // of cells in the nth order // figure of the given type static int cntCells( int n) { int cells = ( int )Math.Pow(n, 2) + ( int )Math.Pow(n - 1, 2); return cells; } // Driver code public static void Main(String[] args) { int n = 3; Console.WriteLine(cntCells(n)); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // Javascript implementation of the approach // Function to return the number // of cells in the nth order // figure of the given type function cntCells(n) { var cells = Math.pow(n, 2) + Math.pow(n - 1, 2); return cells; } // Driver code var n = 3; document.write(cntCells(n)); </script> |
13
Time Complexity: O(1)
Auxiliary Space: O(1), as no extra space is required