Monday, November 18, 2024
Google search engine
HomeData Modelling & AINumber of binary strings such that there is no substring of length...

Number of binary strings such that there is no substring of length ≥ 3

Given an integer N, the task is to count the number of binary strings possible such that there is no substring of length ? 3 of all 1’s. This count can become very large so print the answer modulo 109 + 7.
Examples: 

Input: N = 4 
Output: 13 
All possible valid strings are 0000, 0001, 0010, 0100, 
1000, 0101, 0011, 1010, 1001, 0110, 1100, 1101 and 1011.
Input: N = 2 
Output:

Approach: For every value from 1 to N, the only required strings are in which the number of substrings in which ‘1’ appears consecutively for just two times, one time or zero times. This can be calculated from 2 to N recursively. Dynamic programming can be used for memoization where dp[i][j] will store the number of possible strings such that 1 just appeared consecutively j times upto the ith index and j will be 0, 1, 2, …, i (may vary from 1 to N). 
dp[i][0] = dp[i – 1][0] + dp[i – 1][1] + dp[i – 1][2] as in i position, 0 will be put. 
dp[i][1] = dp[i – 1][0] as there is no 1 at the (i – 1)th position so we take that value. 
dp[i][2] = dp[i – 1][1] as first 1 appeared at (i – 1)th position (consecutively) so we take that value directly. 
The base cases are for length 1 string i.e. dp[1][0] = 1, dp[1][1] = 1, dp[1][2] = 0. So, find all the value dp[N][0] + dp[N][1] + dp[N][2] ans sum of all possible cases at the Nth position.

Below is the implementation of the above approach: 

CPP




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
const long MOD = 1000000007;
 
// Function to return the count of
// all possible binary strings
long countStr(long N)
{
 
    long dp[N + 1][3];
 
    // Fill 0's in the dp array
    memset(dp, 0, sizeof(dp));
 
    // Base cases
    dp[1][0] = 1;
    dp[1][1] = 1;
    dp[1][2] = 0;
 
    for (int i = 2; i <= N; i++) {
 
        // dp[i][j] is the number of possible
        // strings such that '1' just appeared
        // consecutively j times upto ith index
        dp[i][0] = (dp[i - 1][0] + dp[i - 1][1]
                    + dp[i - 1][2])
                   % MOD;
 
        // Taking previously calculated value
        dp[i][1] = dp[i - 1][0] % MOD;
        dp[i][2] = dp[i - 1][1] % MOD;
    }
 
    // Taking all the possible cases that
    // can appear at the Nth position
    long ans = (dp[N][0] + dp[N][1] + dp[N][2]) % MOD;
 
    return ans;
}
 
// Driver code
int main()
{
    long N = 8;
 
    cout << countStr(N);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
     
    final static long MOD = 1000000007;
     
    // Function to return the count of
    // all possible binary strings
    static long countStr(int N)
    {
        long dp[][] = new long[N + 1][3];
     
        // Fill 0's in the dp array
        //memset(dp, 0, sizeof(dp));
     
        // Base cases
        dp[1][0] = 1;
        dp[1][1] = 1;
        dp[1][2] = 0;
     
        for (int i = 2; i <= N; i++)
        {
     
            // dp[i][j] is the number of possible
            // strings such that '1' just appeared
            // consecutively j times upto ith index
            dp[i][0] = (dp[i - 1][0] + dp[i - 1][1]
                        + dp[i - 1][2]) % MOD;
     
            // Taking previously calculated value
            dp[i][1] = dp[i - 1][0] % MOD;
            dp[i][2] = dp[i - 1][1] % MOD;
        }
     
        // Taking all the possible cases that
        // can appear at the Nth position
        long ans = (dp[N][0] + dp[N][1] + dp[N][2]) % MOD;
     
        return ans;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int N = 8;
     
        System.out.println(countStr(N));
    }
}
 
// This code is contributed by AnkitRai01


Python




# Python3 implementation of the approach
MOD = 1000000007
 
# Function to return the count of
# all possible binary strings
def countStr(N):
 
    dp = [[0 for i in range(3)] for i in range(N + 1)]
 
    # Base cases
    dp[1][0] = 1
    dp[1][1] = 1
    dp[1][2] = 0
 
    for i in range(2, N + 1):
 
        # dp[i][j] is the number of possible
        # strings such that '1' just appeared
        # consecutively j times upto ith index
        dp[i][0] = (dp[i - 1][0] + dp[i - 1][1] +
                    dp[i - 1][2]) % MOD
 
        # Taking previously calculated value
        dp[i][1] = dp[i - 1][0] % MOD
        dp[i][2] = dp[i - 1][1] % MOD
 
    # Taking all the possible cases that
    # can appear at the Nth position
    ans = (dp[N][0] + dp[N][1] + dp[N][2]) % MOD
 
    return ans
 
# Driver code
if __name__ == '__main__':
    N = 8
 
    print(countStr(N))
 
# This code is contributed by mohit kumar 29


C#




// C# implementation of the approach
using System;
 
class GFG
{
     
    static long MOD = 1000000007;
     
    // Function to return the count of
    // all possible binary strings
    static long countStr(int N)
    {
        long [,]dp = new long[N + 1, 3];
     
        // Base cases
        dp[1, 0] = 1;
        dp[1, 1] = 1;
        dp[1, 2] = 0;
     
        for (int i = 2; i <= N; i++)
        {
     
            // dp[i,j] is the number of possible
            // strings such that '1' just appeared
            // consecutively j times upto ith index
            dp[i, 0] = (dp[i - 1, 0] + dp[i - 1, 1]
                        + dp[i - 1, 2]) % MOD;
     
            // Taking previously calculated value
            dp[i, 1] = dp[i - 1, 0] % MOD;
            dp[i, 2] = dp[i - 1, 1] % MOD;
        }
     
        // Taking all the possible cases that
        // can appear at the Nth position
        long ans = (dp[N, 0] + dp[N, 1] + dp[N, 2]) % MOD;
     
        return ans;
    }
     
    // Driver code
    public static void Main ()
    {
        int N = 8;
     
        Console.WriteLine(countStr(N));
    }
}
 
// This code is contributed by AnkitRai01


Javascript




<script>
 
// Javascript implementation of the approach
 
var MOD = 1000000007;
 
// Function to return the count of
// all possible binary strings
function countStr(N)
{
 
    var dp = Array.from(Array(N+1), ()=> Array(3).fill(0));
 
    // Base cases
    dp[1][0] = 1;
    dp[1][1] = 1;
    dp[1][2] = 0;
 
    for (var i = 2; i <= N; i++) {
 
        // dp[i][j] is the number of possible
        // strings such that '1' just appeared
        // consecutively j times upto ith index
        dp[i][0] = (dp[i - 1][0] + dp[i - 1][1]
                    + dp[i - 1][2])
                   % MOD;
 
        // Taking previously calculated value
        dp[i][1] = dp[i - 1][0] % MOD;
        dp[i][2] = dp[i - 1][1] % MOD;
    }
 
    // Taking all the possible cases that
    // can appear at the Nth position
    var ans = (dp[N][0] + dp[N][1] + dp[N][2]) % MOD;
 
    return ans;
}
 
// Driver code
var N = 8;
document.write( countStr(N));
 
// This code is contributed by itsok.
</script>


Output

149

Time Complexity: O(N)
Auxiliary Space: O(N)

Efficient Approach: Space Optimization

In previous approach the current computation is depend upon the previous 3 computation dp[i][0] = (dp[i – 1][0] + dp[i – 1][1] + dp[i – 1][2]) So to optimize space we just required previous 3 computation to get the current answer.

Implementation steps:

  • Initialize three variables dp0, dp1, and dp2 to 1, 1, and 0, respectively, which represent the number of binary strings that end in 0, end in 1 with the previous digit being 0, and end in 1 with the previous digit being 1.
  • Run a loop from i = 2 to i = N, and in each iteration:
  • a. Calculate the new value of dp0 as the sum of dp0, dp1, and dp2, modulo MOD.
  • b. Update the value of dp2 as the previous value of dp1.
  • c. Update the value of dp1 as the previous value of dp0.
  • Calculate the answer by adding the values of dp0, dp1, and dp2, modulo MOD, and return it as the output of the function.

Implementation:

C++




#include <bits/stdc++.h>
using namespace std;
 
const long MOD = 1000000007;
 
// Function to return the count of
// all possible binary strings
long countStr(long N)
{
 
    long dp0 = 1;
    long dp1 = 1;
    long dp2 = 0;
 
    for (int i = 2; i <= N; i++) {
 
        // dp[i%3][j] is the number of possible
        // strings such that '1' just appeared
        // consecutively j times upto ith index
        long temp = dp0;
        dp0 = (dp0 + dp1 + dp2) % MOD;
 
        // Taking previously calculated value
        dp2 = dp1;
        dp1 = temp;
    }
 
    // Taking all the possible cases that
    // can appear at the Nth position
    long ans = (dp0 + dp1 + dp2) % MOD;
 
    return ans;
}
 
// Driver code
int main()
{
    long N = 8;
 
    cout << countStr(N);
 
    return 0;
}


Java




import java.io.*;
import java.lang.*;
import java.util.*;
 
class Main {
    public static void main(String[] args)
        throws java.lang.Exception
    {
        long N = 8;
        System.out.println(countStr(N));
    }
 
    // Function to return the count of
    // all possible binary strings
    public static long countStr(long N)
    {
        long dp0 = 1;
        long dp1 = 1;
        long dp2 = 0;
        for (int i = 2; i <= N; i++) {
            // dp[i%3][j] is the number of possible
            // strings such that '1' just appeared
            // consecutively j times upto ith index
            long temp = dp0;
            dp0 = (dp0 + dp1 + dp2) % 1000000007;
           
            // Taking previously calculated value
            dp2 = dp1;
            dp1 = temp;
        }
       
        // Taking all the possible cases that
        // can appear at the Nth position
        long ans = (dp0 + dp1 + dp2) % 1000000007;
        return ans;
    }
}


Python3




MOD = 1000000007
 
# Function to return the count of all possible binary strings
def countStr(N):
    dp0 = 1
    dp1 = 1
    dp2 = 0
 
    for i in range(2, N + 1):
        # dp[i%3][j] is the number of possible strings such that '1' just appeared consecutively j times upto ith index
        temp = dp0
        dp0 = (dp0 + dp1 + dp2) % MOD
 
        # Taking previously calculated value
        dp2 = dp1
        dp1 = temp
 
    # Taking all the possible cases that can appear at the Nth position
    ans = (dp0 + dp1 + dp2) % MOD
 
    return ans
 
# Driver code
N = 8
 
print(countStr(N))


C#




using System;
 
class GFG {
 
    // Function to return the count of
    // all possible binary strings
    public static long CountStr(long N)
    {
        long dp0 = 1;
        long dp1 = 1;
        long dp2 = 0;
        for (int i = 2; i <= N; i++) {
 
            // dp[i%3][j] is the number of possible
            // strings such that '1' just appeared
            // consecutively j times upto ith index
            long temp = dp0;
            dp0 = (dp0 + dp1 + dp2) % 1000000007;
 
            // Taking previously calculated value
            dp2 = dp1;
            dp1 = temp;
        }
 
        // Taking all the possible cases that
        // can appear at the Nth position
        long ans = (dp0 + dp1 + dp2) % 1000000007;
        return ans;
    }
 
    // Driver code
    public static void Main(string[] args)
    {
        long N = 8;
        Console.WriteLine(CountStr(N));
    }
}
 
// This code is contributed by Samim Hossain Mondal.


Javascript




const MOD = 1000000007;
 
// Function to return the count of
// all possible binary strings
function countStr(N) {
    let dp0 = 1;
    let dp1 = 1;
    let dp2 = 0;
 
    for (let i = 2; i <= N; i++) {
        // dp[i%3][j] is the number of possible
        // strings such that '1' just appeared
        // consecutively j times upto ith index
        let temp = dp0;
        dp0 = (dp0 + dp1 + dp2) % MOD;
 
        // Taking previously calculated value
        dp2 = dp1;
        dp1 = temp;
    }
 
    // Taking all the possible cases that
    // can appear at the Nth position
    let ans = (dp0 + dp1 + dp2) % MOD;
 
    return ans;
}
 
// Driver code
let N = 8;
 
console.log(countStr(N));


Output

149

Time Complexity: O(N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments