Saturday, November 16, 2024
Google search engine
HomeData Modelling & AIMinimum sum of a set of nodes of Tree following given conditions

Minimum sum of a set of nodes of Tree following given conditions

Given a tree with N node and N-1 edges and an array arr[] where arr[i] denotes the value of ith node, the task is to find a set of nodes such that the sum of values is minimum and all the other nodes outside the set have an edge with at least one of the nodes in the set.

Examples:

Input: N = 3, edges[] = { {0, 1}, {1, 2} }, arr[] = { 5, 12, 3}
Output: 8
Explanation: We can select set {0, 2}, now unselected node {1} is connected to a selected node. Sum of values of subset nodes = A[0]+A[2] = 5+3 = 8

Input: N = 4 edges[] = { {1, 0}, {3, 0}, {2, 3} }, A[] = { 3, 4, 20, 14}
Output: 17
Explanation: We can select subset {0, 3}. Now unselected node {1} has an edge with node {0} and unselected node{2} has an edge with node {3}. Sum of values of subset nodes = A[0] + A[3] = 3 + 14 = 17

Naive Approach: The problem can be solved based on the following idea:

For each node there are two choices – either to pick or not pick an element to be a part of the set.

Follow the steps mentioned below to implement the idea:

  • Suppose we are at a given node x.
    • Now if we include the current node x, then for its children we can either take its child or leave it.
    • If we don’t include the current node x, then we have to include its children.
  • Now start a dfs from any node (say 0).
  • Initialize ans to 0.
  • Maintain a variable (say pick) for a given dfs. which represents whether it is compulsory to pick the current node or there are options.
    • If pick = 1, include the current node in the ans.
    • If pick = 0, first calculate ans by taking the current node and then leaving it. Return the minimum of the two possible cases.
  • Run the dfs from any start node.
  • Return the value of ans.

Below is the Implementation of the above approach:

C++




// C++ code to implement the approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the subset
int dfs(int root, map<int, vector<int> >& graph,
        vector<int>& v, int pick, int parent)
{
    int ans = 0;
 
    // Checking if it is compulsory
    // to pick the current element
    if (pick) {
        ans += v[root];
        for (auto it : graph[root]) {
            if (it != parent) {
                ans += dfs(it, graph, v, 0, root);
            }
        }
    }
 
    // Two choices either pick or not pick an element
    else {
        int temp = v[root];
        for (auto it : graph[root]) {
            if (it != parent) {
                temp += dfs(it, graph, v, 0, root);
            }
        }
 
        // If we leave the current element
        for (auto it : graph[root]) {
            if (it != parent) {
                ans += dfs(it, graph, v, 1, root);
            }
        }
 
        // ans stores the final ans
        ans = min(ans, temp);
    }
 
    // Return the final ans
    return ans;
}
 
// Function to find the minimum sum
int findminSum(int edges[][2], vector<int>& v, int N)
{
    map<int, vector<int> > graph;
 
    // Form the tree
    for (int i = 0; i < N - 1; i++) {
        int a = edges[i][1];
        int b = edges[i][0];
        graph[a].push_back(b);
        graph[b].push_back(a);
    }
    int pick = 0;
    int parent = -1;
 
    // Function call
    return dfs(0, graph, v, pick, parent);
}
 
// Driver Code
int main()
{
    // TestCase 1
    int N = 4;
    vector<int> arr = { 3, 4, 20, 14 };
    int edges[][2] = { { 1, 0 }, { 3, 0 }, { 2, 3 } };
    cout << findminSum(edges, arr, N) << endl;
 
    // TestCase 2
    int N2 = 3;
    vector<int> arr2 = { 5, 12, 3 };
    int edges2[][2] = { { 0, 1 }, { 1, 2 } };
    cout << findminSum(edges2, arr2, N2) << endl;
 
    return 0;
}


Java




// Java code to implement the approach
import java.io.*;
import java.util.*;
 
class GFG {
 
  // Function to find the subset
  public static int
    dfs(int root, Map<Integer, List<Integer> > graph,
        List<Integer> v, int pick, int parent)
  {
    int ans = 0;
 
    // Checking if it is compulsory
    // to pick the current element
    if (pick == 1) {
      ans += v.get(root);
      for (int it : graph.get(root)) {
        if (it != parent) {
          ans += dfs(it, graph, v, 0, root);
        }
      }
    }
 
    // Two choices either pick or not pick an element
    else {
      int temp = v.get(root);
      for (int it : graph.get(root)) {
        if (it != parent) {
          temp += dfs(it, graph, v, 0, root);
        }
      }
 
      // If we leave the current element
      for (int it : graph.get(root)) {
        if (it != parent) {
          ans += dfs(it, graph, v, 1, root);
        }
      }
 
      // ans stores the final ans
      ans = Math.min(ans, temp);
    }
 
    // Return the final ans
    return ans;
  }
 
  static int findminSum(int[][] edges, List<Integer> v,
                        int N)
  {
    Map<Integer, List<Integer> > graph
      = new HashMap<>();
 
    // Form the tree
    for (int i = 0; i < N - 1; i++) {
      int a = edges[i][1];
      int b = edges[i][0];
      if (!graph.containsKey(a)) {
        graph.put(a, new ArrayList<>());
      }
      if (!graph.containsKey(b)) {
        graph.put(b, new ArrayList<>());
      }
      graph.get(a).add(b);
      graph.get(b).add(a);
    }
    int pick = 0;
    int parent = -1;
 
    // Function call
    return dfs(0, graph, v, pick, parent);
  }
 
  public static void main(String[] args)
  {
    // TestCase 1
    int N = 4;
    ArrayList<Integer> arr = new ArrayList<Integer>(
      Arrays.asList(3, 4, 20, 14));
    int[][] edges = { { 1, 0 }, { 3, 0 }, { 2, 3 } };
    System.out.println(findminSum(edges, arr, N));
 
    // TestCase 2
    int N2 = 3;
    ArrayList<Integer> arr2 = new ArrayList<Integer>(
      Arrays.asList(5, 12, 3));
    int[][] edges2 = { { 0, 1 }, { 1, 2 } };
    System.out.println(findminSum(edges2, arr2, N2));
  }
}
 
// This code is contributed by lokeshmvs21.


Python3




# python implementation
def dfs(root, graph, v, pick, parent):
    ans = 0
 
    # Checking if it is compulsory
    # to pick the current element
    if pick:
        ans += v[root]
        for it in graph[root]:
            if it != parent:
                ans += dfs(it, graph, v, 0, root)
    # Two choices either pick or not pick an element
    else:
        temp = v[root]
        for it in graph[root]:
            if it != parent:
                temp += dfs(it, graph, v, 0, root)
 
        # If we leave the current element
        for it in graph[root]:
            if it != parent:
                ans += dfs(it, graph, v, 1, root)
 
        # ans stores the final ans
        ans = min(ans, temp)
 
    # Return the final ans
    return ans
 
 
def findminSum(edges, v, N):
    graph = {}
 
    # Form the tree
    for i in range(N-1):
        a = edges[i][1]
        b = edges[i][0]
        graph[a] = graph.get(a, []) + [b]
        graph[b] = graph.get(b, []) + [a]
    pick = 0
    parent = -1
 
    # Function call
    return dfs(0, graph, v, pick, parent)
 
# TestCase 1
N = 4
arr = [3, 4, 20, 14]
edges = [[1, 0], [3, 0], [2, 3]]
print(findminSum(edges, arr, N))
 
# TestCase 2
N2 = 3
arr2 = [5, 12, 3]
edges2 = [[0, 1], [1, 2]]
print(findminSum(edges2, arr2, N2))
 
# This code is contributed by ksam24000


C#




// C# code to implement the approach
using System;
using System.Collections.Generic;
 
class GFG
{
  // Function to find the subset
  public static int Dfs(int root, Dictionary<int, List<int>> graph,
                        List<int> v, int pick, int parent)
  {
    int ans = 0;
 
    // Checking if it is compulsory
    // to pick the current element
    if (pick == 1)
    {
      ans += v[root];
      foreach (int it in graph[root])
      {
        if (it != parent)
        {
          ans += Dfs(it, graph, v, 0, root);
        }
      }
    }
 
    // Two choices either pick or not pick an element
    else
    {
      int temp = v[root];
      foreach (int it in graph[root])
      {
        if (it != parent)
        {
          temp += Dfs(it, graph, v, 0, root);
        }
      }
 
      // If we leave the current element
      foreach (int it in graph[root])
      {
        if (it != parent)
        {
          ans += Dfs(it, graph, v, 1, root);
        }
      }
 
      // ans stores the final ans
      ans = Math.Min(ans, temp);
    }
 
    // Return the final ans
    return ans;
  }
 
  static int FindMinSum(int[][] edges, List<int> v, int N)
  {
    Dictionary<int, List<int>> graph = new Dictionary<int, List<int>>();
 
    // Form the tree
    for (int i = 0; i < N - 1; i++)
    {
      int a = edges[i][1];
      int b = edges[i][0];
      if (!graph.ContainsKey(a))
      {
        graph[a] = new List<int>();
      }
      if (!graph.ContainsKey(b))
      {
        graph[b] = new List<int>();
      }
      graph[a].Add(b);
      graph[b].Add(a);
    }
    int pick = 0;
    int parent = -1;
 
    // Function call
    return Dfs(0, graph, v, pick, parent);
  }
 
  static void Main(string[] args)
  {
    // TestCase 1
    int N = 4;
    List<int> arr = new List<int>(new int[] { 3, 4, 20, 14 });
    int[][] edges = new int[][] { new int[] { 1, 0 }, new int[] { 3, 0 }, new int[] { 2, 3 } };
    Console.WriteLine(FindMinSum(edges, arr, N));
 
    // TestCase 2
    int N2 = 3;
    List<int> arr2 = new List<int>(new int[] { 5, 12, 3 });
    int[][] edges2 = new int[][] { new int[] { 0, 1 }, new int[] { 1, 2 } };
    Console.WriteLine(FindMinSum(edges2, arr2, N2));
  }
}
 
// This code is contributed by lokeshpotta20.


Javascript




// Function to find the subset
function dfs(root, graph, v, pick, parent) {
    let ans = 0;
    // Checking if it is compulsory
    // to pick the current element   
    if (pick) {
        ans += v[root];
        graph[root].forEach(it => {
            if (it !== parent) {
                ans += dfs(it, graph, v, 0, root);
            }
        });
    } else {
    // Two choices either pick or not pick an element
        let temp = v[root];
        graph[root].forEach(it => {
            if (it !== parent) {
                temp += dfs(it, graph, v, 0, root);
            }
        });
         
       // If we leave the current element
        graph[root].forEach(it => {
            if (it !== parent) {
                ans += dfs(it, graph, v, 1, root);
            }
        });
      // ans stores the final ans
        ans = Math.min(ans, temp);
    }
    // Return the final ans
    return ans;
}
 
// Function to find the minimum sum
function findminSum(edges, v, N) {
    let graph = {};
     // Form the tree
    for (let i = 0; i < N - 1; i++) {
        let a = edges[i][1], b = edges[i][0];
        if (!graph[a]) graph[a] = [];
        if (!graph[b]) graph[b] = [];
        graph[a].push(b);
        graph[b].push(a);
    }
    let pick = 0, parent = -1;
    // Function call
    return dfs(0, graph, v, pick, parent);
}
 
// TestCase 1
let N = 4;
let arr = [3, 4, 20, 14];
let edges = [[1, 0], [3, 0], [2, 3]];
console.log(findminSum(edges, arr, N));
 
// TestCase 2
let N2 = 3;
let arr2 = [5, 12, 3];
let edges2 = [[0, 1], [1, 2]];
console.log(findminSum(edges2, arr2, N2));


Output

17
8

Time complexity: O(2N)
Auxiliary space: O(N)

Efficient Approach: The problem can be solved using memoization based on the following idea:

From the above recursion it can be seen that the approach has some overlapping subproblems. Here each unique state can be represented using two variables – one for the index (say i) and the other for representing if the element is picked or not (say j).

Now, use this memoization in the above recursion to avoid repeated calculation of the same subproblem.

Below is the Implementation of the above approach:

C++




// C++ code to implement the approach
 
#include <bits/stdc++.h>
using namespace std;
 
// dp array to store repeated state
int dp[1000][2];
 
// Function to find the subset
int dfs(int root, map<int, vector<int> >& graph,
        vector<int>& v, int pick, int parent)
{
    int ans = 0;
 
    // Checking overlapping subproblems
    if (dp[root][pick] != -1) {
        return dp[root][pick];
    }
 
    // If it is compulsory to take the current element
    if (pick) {
        ans += v[root];
        for (auto it : graph[root]) {
            if (it != parent) {
                ans += dfs(it, graph, v, 0, root);
            }
        }
        return ans;
    }
 
    // Choice to pick or not pick the element
    else {
 
        int temp = v[root];
        for (auto it : graph[root]) {
            if (it != parent) {
                temp += dfs(it, graph, v, 0, root);
            }
        }
 
        // If we leave the current element
        for (auto it : graph[root]) {
            if (it != parent) {
                ans += dfs(it, graph, v, 1, root);
            }
        }
 
        // ans stores the final ans
        ans = min(ans, temp);
    }
 
    // Store the ans and return the final ans
    return dp[root][pick] = ans;
}
 
// Function to find the minimum sum
int findminSum(int edges[][2], vector<int>& v, int N)
{
    map<int, vector<int> > graph;
 
    // Forming the tree
    for (int i = 0; i < N - 1; i++) {
        int a = edges[i][1];
        int b = edges[i][0];
        graph[a].push_back(b);
        graph[b].push_back(a);
    }
    // Initialize the dp array
    memset(dp, -1, sizeof(dp));
    int pick = 0;
    int parent = -1;
 
    // Function call
    return dfs(0, graph, v, pick, parent);
}
 
// Driver Code
int main()
{
    // TestCase 1
    int N = 4;
    vector<int> arr = { 3, 4, 20, 14 };
    int edges[][2] = { { 1, 0 }, { 3, 0 }, { 2, 3 } };
    cout << findminSum(edges, arr, N) << endl;
 
    // TestCase 2
    int N2 = 3;
    vector<int> arr2 = { 5, 12, 3 };
    int edges2[][2] = { { 0, 1 }, { 1, 2 } };
    cout << findminSum(edges2, arr2, N2) << endl;
 
    return 0;
}


Java




// Java code to implement the approach
import java.io.*;
import java.util.*;
 
class GFG {
 
    // dp array to store repeated state
    static int[][] dp = new int[1000][2];
 
    // Function to find the subset
    static int dfs(int root,
                   Map<Integer, List<Integer> > graph,
                   List<Integer> v, int pick, int parent)
    {
        int ans = 0;
 
        // Checking overlapping subproblems
        if (dp[root][pick] != -1) {
            return dp[root][pick];
        }
 
        // If it is compulsory to take the current element
        if (pick == 1) {
            ans += v.get(root);
            for (int it : graph.get(root)) {
                if (it != parent) {
                    ans += dfs(it, graph, v, 0, root);
                }
            }
            return ans;
        }
 
        // Choice to pick or not pick the element
        else {
            int temp = v.get(root);
            for (int it : graph.get(root)) {
                if (it != parent) {
                    temp += dfs(it, graph, v, 0, root);
                }
            }
 
            // If we leave the current element
            for (int it : graph.get(root)) {
                if (it != parent) {
                    ans += dfs(it, graph, v, 1, root);
                }
            }
 
            // ans stores the final ans
            ans = Math.min(ans, temp);
        }
 
        // Store the ans and return the final ans
        dp[root][pick] = ans;
        return ans;
    }
 
    // Function to find the minimum sum
    static int findminSum(int[][] edges, List<Integer> v,
                          int N)
    {
        Map<Integer, List<Integer> > graph
            = new HashMap<>();
 
        // Forming the tree
        for (int i = 0; i < N - 1; i++) {
            int a = edges[i][1];
            int b = edges[i][0];
            if (!graph.containsKey(a)) {
                graph.put(a, new ArrayList<>());
            }
            graph.get(a).add(b);
            if (!graph.containsKey(b)) {
                graph.put(b, new ArrayList<>());
            }
            graph.get(b).add(a);
        }
        // Initialize the dp array
        for (int i = 0; i < 1000; i++) {
            Arrays.fill(dp[i], -1);
        }
        int pick = 0;
        int parent = -1;
 
        // Function call
        return dfs(0, graph, v, pick, parent);
    }
 
    public static void main(String[] args)
    {
        // TestCase 1
        int N = 4;
        List<Integer> arr = Arrays.asList(3, 4, 20, 14);
        int[][] edges = { { 1, 0 }, { 3, 0 }, { 2, 3 } };
        System.out.println(findminSum(edges, arr, N));
 
        // TestCase 2
        int N2 = 3;
        List<Integer> arr2 = Arrays.asList(5, 12, 3);
        int[][] edges2 = { { 0, 1 }, { 1, 2 } };
        System.out.println(findminSum(edges2, arr2, N2));
    }
}
 
// This code is contributed by lokesh.


Python3




# Python code to implement the approach
 
from collections import defaultdict
 
# dp array to store repeated state
dp = [[-1 for _ in range(2)] for _ in range(1000)]
 
# Function to find the subset
def dfs(root, graph, v, pick, parent):
    ans = 0
 
    # Checking overlapping subproblems
    if dp[root][pick] != -1:
        return dp[root][pick]
 
    # If it is compulsory to take the current element
    if pick:
        ans += v[root]
        for it in graph[root]:
            if it != parent:
                ans += dfs(it, graph, v, 0, root)
        return ans
 
    # Choice to pick or not pick the element
    else:
        temp = v[root]
        for it in graph[root]:
            if it != parent:
                temp += dfs(it, graph, v, 0, root)
 
        # If we leave the current element
        for it in graph[root]:
            if it != parent:
                ans += dfs(it, graph, v, 1, root)
 
        # ans stores the final ans
        ans = min(ans, temp)
 
    # Store the ans and return the final ans
    dp[root][pick] = ans
    return ans
 
# Function to find the minimum sum
def findminSum(edges, v, N):
    graph = defaultdict(list)
 
    # Forming the tree
    for i in range(N-1):
        a, b = edges[i]
        graph[a].append(b)
        graph[b].append(a)
 
    pick = 0
    parent = -1
 
    # Function call
    return dfs(0, graph, v, pick, parent)
 
# Driver Code
if __name__ == "__main__":
    # TestCase 1
    N = 4
    arr = [3, 4, 20, 14]
    edges = [[1, 0], [3, 0], [2, 3]]
    print(findminSum(edges, arr, N))
 
    # TestCase 2
    dp = [[-1 for _ in range(2)] for _ in range(1000)]
    N2 = 3
    arr2 = [5, 12, 3]
    edges2 = [[0, 1], [1, 2]]
    print(findminSum(edges2, arr2, N2))
 
# This code is contributed by Vikram_Shirsat


C#




// C# code to implement the approach
 
using System;
using System.Collections.Generic;
 
public class GFG {
 
    // dp array to store repeated state
    static int[, ] dp = new int[1000, 2];
 
    // Function to find the subset
    static int dfs(int root,
                   Dictionary<int, List<int> > graph,
                   List<int> v, int pick, int parent)
    {
        int ans = 0;
 
        // Checking overlapping subproblems
        if (dp[root, pick] != -1) {
            return dp[root, pick];
        }
 
        // If it is compulsory to take the current element
        if (pick == 1) {
            ans += v[root];
 
            foreach(int it in graph[root])
            {
                if (it != parent) {
                    ans += dfs(it, graph, v, 0, root);
                }
            }
 
            return ans;
        }
 
        // Choice to pick or not pick the element
        else {
            int temp = v[root];
 
            foreach(int it in graph[root])
            {
                if (it != parent) {
                    temp += dfs(it, graph, v, 0, root);
                }
            }
 
            // If we leave the current element
            for (int it = 0; it < graph[root].Count; it++) {
                if (graph[root][it] != parent) {
                    ans += dfs(graph[root][it], graph, v, 1,
                               root);
                }
            }
 
            // ans stores the final ans
            ans = Math.Min(ans, temp);
        }
 
        // Store the ans and return the final ans
        dp[root, pick] = ans;
        return ans;
    }
 
    // Function to find the minimum sum
    static int findminSum(int[, ] edges, List<int> v, int N)
    {
        Dictionary<int, List<int> > graph
            = new Dictionary<int, List<int> >();
 
        // Forming the tree
        for (int i = 0; i < N - 1; i++) {
            int a = edges[i, 1];
            int b = edges[i, 0];
 
            if (!graph.ContainsKey(a)) {
                graph.Add(a, new List<int>());
            }
 
            graph[a].Add(b);
 
            if (!graph.ContainsKey(b)) {
                graph.Add(b, new List<int>());
            }
 
            graph[b].Add(a);
        }
 
        // Initialize the dp array
        for (int i = 0; i < 1000; i++) {
            dp[i, 0] = -1;
            dp[i, 1] = -1;
        }
 
        int pick = 0;
        int parent = -1;
 
        // Function call
        return dfs(0, graph, v, pick, parent);
    }
 
    static public void Main()
    {
 
        // Code
        // TestCase 1
        int N = 4;
        List<int> arr
            = new List<int>(new int[] { 3, 4, 20, 14 });
        int[, ] edges = { { 1, 0 }, { 3, 0 }, { 2, 3 } };
        Console.WriteLine(findminSum(edges, arr, N));
 
        // TestCase 2
        int N2 = 3;
        List<int> arr2
            = new List<int>(new int[] { 5, 12, 3 });
        int[, ] edges2 = { { 0, 1 }, { 1, 2 } };
        Console.WriteLine(findminSum(edges2, arr2, N2));
    }
}
 
// This code is contributed by karthik.


Javascript




// JavaScript code to implement the approach
 
// Function to find the subset
function dfs(root, graph, v, pick, parent, dp) {
  let ans = 0;
 
  // Checking overlapping subproblems
  if (dp[root][pick] != -1) {
    return dp[root][pick];
  }
 
  // If it is compulsory to take the current element
  if (pick == 1) {
    ans += v[root];
    for (let i = 0; i < graph[root].length; i++) {
      let it = graph[root][i];
      if (it != parent) {
        ans += dfs(it, graph, v, 0, root, dp);
      }
    }
    return ans;
  }
 
  // Choice to pick or not pick the element
  else {
    let temp = v[root];
    for (let i = 0; i < graph[root].length; i++) {
      let it = graph[root][i];
      if (it != parent) {
        temp += dfs(it, graph, v, 0, root, dp);
      }
    }
 
    // If we leave the current element
    for (let i = 0; i < graph[root].length; i++) {
      let it = graph[root][i];
      if (it != parent) {
        ans += dfs(it, graph, v, 1, root, dp);
      }
    }
 
    // ans stores the final ans
    ans = Math.min(ans, temp);
  }
 
  // Store the ans and return the final ans
  dp[root][pick] = ans;
  return ans;
}
 
// Function to find the minimum sum
function findminSum(edges, v, N) {
  let graph = {};
 
  // Forming the tree
  for (let i = 0; i < N - 1; i++) {
    let a = edges[i][1];
    let b = edges[i][0];
    if (!graph.hasOwnProperty(a)) {
      graph[a] = [];
    }
    graph[a].push(b);
    if (!graph.hasOwnProperty(b)) {
      graph[b] = [];
    }
    graph[b].push(a);
  }
 
  // Initialize the dp array
  let dp = new Array(1000).fill(-1).map(() => new Array(2).fill(-1));
  let pick = 0;
  let parent = -1;
 
  // Function call
  return dfs(0, graph, v, pick, parent, dp);
}
 
// Test Cases
let N = 4;
let arr = [3, 4, 20, 14];
let edges = [[1, 0], [3, 0], [2, 3]];
console.log(findminSum(edges, arr, N));
 
let N2 = 3;
let arr2 = [5, 12, 3];
let edges2 = [[0, 1], [1, 2]];
console.log("<br>" + findminSum(edges2, arr2, N2));
 
// This code is contributed by sankar


Output

17
8

Time Complexity: O(N)
Auxiliary Space: O(N)

Related Articles:

Last Updated :
27 Feb, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments