Given an array arr[] consisting of N positive integers, the task is to find the minimum number of pairs (arr[i], arr[j]) from the given array needed to be replaced with their LCM such that the array is reduced to a single element equal to the LCM of the initial array.
Examples:
Input: arr[] = {1, 2, 3, 4}
Output: 3
Explanation:
LCM of the array = 12
Step 1: LCM(3, 4) = 12. Therefore array is modified to {1, 2, 12}
Step 2: LCM(1, 12) = 12. Therefore array is modified to {2, 12}
Step 3: LCM(2, 12) = 12. Therefore array is modified to {12}
Input: arr[] = {7, 9, 3}
Output: 2
Explanation:
LCM of the array = 63
Step 1: LCM(7, 9) = 63. Therefore array is modified to {63, 3}
Step 2: LCM(63, 3) = 63. Therefore array is modified to {63}
Naive Approach: The idea is to generate all possible pairs and for each pair, replace them by their LCM and calculate the number of steps required to reduce them to a single array element equal to their LCM. Print the minimum number of operations required.
Time Complexity: O((N!)*log N)
Auxiliary Space: O(N)
Efficient Approach: The above approach can be optimized based on the following observations:
- The LCM of an array is equal to the product of all prime numbers in the array.
- In (X – 1) steps, the LCM of all the X prime numbers can be obtained using two numbers as pairs.
- In next (N – 2) steps convert the rest (N – 2) elements equals to the LCM of the array.
- Therefore, the total number of steps is given by:
(N – 2) + (X – 1) for N > 2
- For N = 1, the number of operations is simply 0 and for N = 2, the number of operations is 1.
Steps:
- If N = 1 then the count of steps is 0.
- If N = 2 then the count of steps is 1.
- Generate all primes up to N using Sieve Of Eratosthenes.
- Store the count of primes in a variable, say X.
- The total count of operations is given by:
(N – 2) + (X – 1) for N > 2
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; const int maxm = 10001; // Boolean array to set or unset // prime non-prime indices bool prime[maxm]; // Stores the prefix sum of the count // of prime numbers int prime_number[maxm]; // Function to check if a number // is prime or not from 0 to N void SieveOfEratosthenes() { memset (prime, true , sizeof (prime)); for ( int p = 2; p * p < maxm; p++) { // If p is a prime if (prime[p] == true ) { // Set its multiples as // non-prime for ( int i = p * p; i < maxm; i += p) prime[i] = false ; } } prime[0] = false ; prime[1] = false ; } // Function to store the count of // prime numbers void num_prime() { prime_number[0] = 0; for ( int i = 1; i <= maxm; i++) prime_number[i] = prime_number[i - 1] + prime[i]; } // Function to count the operations // to reduce the array to one element // by replacing each pair with its LCM void min_steps( int arr[], int n) { // Generating Prime Number SieveOfEratosthenes(); num_prime(); // Corner Case if (n == 1) cout << "0\n" ; else if (n == 2) cout << "1\n" ; else cout << prime_number[n] - 1 + (n - 2); } // Driver Code int main() { // Given array arr[] int arr[] = { 5, 4, 3, 2, 1 }; int N = sizeof (arr) / sizeof (arr[0]); // Function Call min_steps(arr, N); return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG{ static final int maxm = 10001 ; // Boolean array to set or unset // prime non-prime indices static boolean prime[]; // Stores the prefix sum of the count // of prime numbers static int prime_number[]; // Function to check if a number // is prime or not from 0 to N static void SieveOfEratosthenes() { Arrays.fill(prime, true ); for ( int p = 2 ; p * p < maxm; p++) { // If p is a prime if (prime[p] == true ) { // Set its multiples as // non-prime for ( int i = p * p; i < maxm; i += p) prime[i] = false ; } } prime[ 0 ] = false ; prime[ 1 ] = false ; } // Function to store the count of // prime numbers static void num_prime() { prime_number[ 0 ] = 0 ; for ( int i = 1 ; i <= maxm; i++) { int tmp; if (prime[i] == true ) { tmp = 1 ; } else { tmp = 0 ; } prime_number[i] = prime_number[i - 1 ] + tmp; } } // Function to count the operations // to reduce the array to one element // by replacing each pair with its LCM static void min_steps( int arr[], int n) { // Generating Prime Number SieveOfEratosthenes(); num_prime(); // Corner Case if (n == 1 ) { System.out.println( "0" ); } else if (n == 2 ) { System.out.println( "1" ); } else { System.out.println(prime_number[n] - 1 + (n - 2 )); } } // Driver code public static void main(String[] args) { prime = new boolean [maxm + 1 ]; // Stores the prefix sum of the count // of prime numbers prime_number = new int [maxm + 1 ]; // Given array arr[] int arr[] = { 5 , 4 , 3 , 2 , 1 }; int N = arr.length; // Function call min_steps(arr, N); } } // This code is contributed by rutvik_56 |
Python3
# Python3 program for # the above approach maxm = 10001 ; # Boolean array to set or unset # prime non-prime indices prime = [ True ] * (maxm + 1 ); # Stores the prefix sum of the count # of prime numbers prime_number = [ 0 ] * (maxm + 1 ); # Function to check if a number # is prime or not from 0 to N def SieveOfEratosthenes(): for p in range ( 2 , ( int (maxm * * 1 / 2 ))): # If p is a prime if (prime[p] = = True ): # Set its multiples as # non-prime for i in range (p * p, maxm, p): prime[i] = False ; prime[ 0 ] = False ; prime[ 1 ] = False ; # Function to store the count of # prime numbers def num_prime(): prime_number[ 0 ] = 0 ; for i in range ( 1 , maxm + 1 ): tmp = - 1 ; if (prime[i] = = True ): tmp = 1 ; else : tmp = 0 ; prime_number[i] = prime_number[i - 1 ] + tmp; # Function to count the operations # to reduce the array to one element # by replacing each pair with its LCM def min_steps(arr, n): # Generating Prime Number SieveOfEratosthenes(); num_prime(); # Corner Case if (n = = 1 ): print ( "0" ); elif (n = = 2 ): print ( "1" ); else : print (prime_number[n] - 1 + (n - 2 )); # Driver code if __name__ = = '__main__' : # Given array arr arr = [ 5 , 4 , 3 , 2 , 1 ]; N = len (arr); # Function call min_steps(arr, N); # This code is contributed by Rajput-Ji |
C#
// C# program for the above approach using System; class GFG{ static readonly int maxm = 10001; // Boolean array to set or unset // prime non-prime indices static bool []prime; // Stores the prefix sum of the count // of prime numbers static int []prime_number; // Function to check if a number // is prime or not from 0 to N static void SieveOfEratosthenes() { for ( int i = 0; i < prime.Length; i++) prime[i] = true ; for ( int p = 2; p * p < maxm; p++) { // If p is a prime if (prime[p] == true ) { // Set its multiples as // non-prime for ( int i = p * p; i < maxm; i += p) prime[i] = false ; } } prime[0] = false ; prime[1] = false ; } // Function to store the count of // prime numbers static void num_prime() { prime_number[0] = 0; for ( int i = 1; i <= maxm; i++) { int tmp; if (prime[i] == true ) { tmp = 1; } else { tmp = 0; } prime_number[i] = prime_number[i - 1] + tmp; } } // Function to count the operations // to reduce the array to one element // by replacing each pair with its LCM static void min_steps( int []arr, int n) { // Generating Prime Number SieveOfEratosthenes(); num_prime(); // Corner Case if (n == 1) { Console.WriteLine( "0" ); } else if (n == 2) { Console.WriteLine( "1" ); } else { Console.WriteLine(prime_number[n] - 1 + (n - 2)); } } // Driver code public static void Main(String[] args) { prime = new bool [maxm + 1]; // Stores the prefix sum of the count // of prime numbers prime_number = new int [maxm + 1]; // Given array []arr int []arr = {5, 4, 3, 2, 1}; int N = arr.Length; // Function call min_steps(arr, N); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // javascript program for the above approach const maxm = 10001; // Boolean array to set or unset // prime non-prime indices var prime = Array(); // Stores the prefix sum of the count // of prime numbers var prime_number = Array(); // Function to check if a number // is prime or not from 0 to N function SieveOfEratosthenes() { for (i = 0; i < maxm; i++) prime[i] = true ; for (p = 2; p * p < maxm; p++) { // If p is a prime if (prime[p] == true ) { // Set its multiples as // non-prime for (i = p * p; i < maxm; i += p) prime[i] = false ; } } prime[0] = false ; prime[1] = false ; } // Function to store the count of // prime numbers function num_prime() { prime_number[0] = 0; for (i = 1; i <= maxm; i++) { var tmp; if (prime[i] == true ) { tmp = 1; } else { tmp = 0; } prime_number[i] = prime_number[i - 1] + tmp; } } // Function to count the operations // to reduce the array to one element // by replacing each pair with its LCM function min_steps(arr , n) { // Generating Prime Number SieveOfEratosthenes(); num_prime(); // Corner Case if (n == 1) { document.write( "0" ); } else if (n == 2) { document.write( "1" ); } else { document.write(prime_number[n] - 1 + (n - 2)); } } // Driver code // Stores the prefix sum of the count // of prime numbers prime_number.fill(0); // Given array arr var arr = [ 5, 4, 3, 2, 1 ]; var N = arr.length; // Function call min_steps(arr, N); // This code is contributed by aashish1995 </script> |
5
Time Complexity: O(N + log(log(maxm))
Auxiliary Space: O(maxm)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!