Monday, November 18, 2024
Google search engine
HomeData Modelling & AIMinimize value of equation (yi + yj + |xi – xj|) using...

Minimize value of equation (yi + yj + |xi – xj|) using given points

Given an array arr[] of size N where arr[i] is in the form [xi, yi] denoting a point (xi, yi) on a 2D plane. The array is sorted on x-coordinates. Also, an integer K is given. The task is to minimize the value of the equation yi + yj + |xi – xj| where |xi – xj| ≤ K and 1 ≤ i < j ≤ N. It is guaranteed that there exists at least one pair of points that satisfy the constraint |xi – xj| ≤ K.

Examples:

Input: arr[4] = {{1, 3}, {2, 0}, {5, 10}, {6, -10}}, K = 1
Output: 1
Explanation: The first two points satisfies the given condition |xi – xj| ≤ 1. 
Now, the equation  =  3 + 0 + |1 – 2| = 4. 
Similarly, Third and fourth points also satisfy the condition and 
give a value of 10 + -10 + |5 – 6| = 1. 
Except these 2 pairs no other points satisfy the given condition. 
Minimum of 4 and 1 is 1. So output is 1.

Input: arr[4] = {{0, 0}, {3, 0}, {9, 2}}, K = 3
Output: 3
Explanation: Only the first two points have an absolute difference of 3. 
It gives the value of 0 + 0 + |0 – 3| = 3.

 

Approach: The problem reduces to find the minimum value of (yj + xj) + (yi – xi). Since the absolute difference of the x coordinates of the points considered must be less than or equal to K so the problem can be solved using a minimum heap. For each and every point consider the top value of the heap and check if the x coordinate of the top and the current point is less than K, take minimum among those and update the heap and follow the same for the rest of the coordinates. Follow the steps below to solve this problem:

  • Initialize the minimum priority queue minh[].
  • Initialize the variable min_val as INT_MAX.
  • Iterate over the range [0, n) using the variable index and perform the following tasks:
    • Pop the elements from the min-heap minh[] until the difference in x-coordinates is greater than K.
    • If the heap is not empty, then update the value of min_val.
    • Push the value of {arr[index][1] – arr[index][0], arr[index][0]}.
  • After performing the above steps, print the value of min_val as the answer.

Below is the implementation of the above approach.

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
typedef pair<int, int> pi;
 
// Utility function to find minimum
// value of equation
int MinimumValue(int arr[][2], int n, int k)
{
 
    // Minimum heap for storing
    // (x-y) difference and x
    // coordinate as the pair
    priority_queue<pi, vector<pi>,
                   greater<pi> >
        minh;
 
    int min_val = INT_MAX;
 
    for (int index = 0; index < n; index++) {
 
        // Pop until the x-coordinates
        // difference is greater than K
        while ((
            !minh.empty()
            && ((arr[index][0]
                 - minh.top().second)
                > k))) {
            minh.pop();
        }
 
        // If not heap empty update min_val
        if (!minh.empty()) {
            min_val
                = min(min_val,
                      arr[index][0]
                          + arr[index][1]
                          + minh.top().first);
        }
 
        // Push the current pair in the heap
        minh.push({ arr[index][1]
                        - arr[index][0],
                    arr[index][0] });
    }
 
    return min_val;
}
 
// Driver Code
int main()
{
    // Input taken
    int arr[4][2]
        = { { 1, 3 }, { 2, 0 },
            { 5, 10 }, { 6, -10 } };
    int K = 1;
    int n = 4;
 
    // Function called
    cout << MinimumValue(arr, n, K) << "\n";
 
    return 0;
}


Java




// Java program for the above approach
import java.util.PriorityQueue;
public class GFG
{
 
  // Utility function to find minimum
  // value of equation
  static int MinimumValue(int[][] arr, int n, int k)
  {
 
    // Minimum heap for storing
    // (x-y) difference and x
    // coordinate as the pair
    PriorityQueue<int[]> minh
      = new PriorityQueue<int[]>((a, b) -> {
      if (a[0] == b[0])
        return a[1] - b[1];
      return a[0] - b[0];
    });
    int min_val = Integer.MAX_VALUE;
    for (int index = 0; index < n; index++)
    {
 
      // Pop until the x-coordinates
      // difference is greater than K
      while (!minh.isEmpty()) {
        int[] pi = minh.poll();
        if ((arr[index][0] - (-1 * pi[1])) <= k) {
          minh.add(pi);
          break;
        }
      }
 
      // If not heap empty update min_val
      if (!minh.isEmpty()) {
        int[] pi = minh.poll();
        min_val = Math.min(
          min_val, arr[index][0] + arr[index][1]
          + (-1 * pi[1]));
        minh.add(pi);
      }
 
      // Push the current pair in the heap
      minh.add(new int[] { -1 * arr[index][1]
        - (-1 * arr[index][0]),
                          -1 * arr[index][0] });
    }
 
    return min_val;
  }
 
  // Driver code
  public static void main(String[] args)
  {
 
    // Input taken
    int[][] arr
      = { { 1, 3 }, { 2, 0 }, { 5, 10 }, { 6, -10 } };
    int K = 1;
    int n = 4;
 
    // Function called
    System.out.println(MinimumValue(arr, n, K));
  }
}
 
// This code is contributed by Lovely Jain


Python3




# python3 program for the above approach
from queue import PriorityQueue
INT_MAX = 2147483647
 
# Utility function to find minimum
# value of equation
def MinimumValue(arr, n, k):
 
   # Minimum heap for storing
   # (x-y) difference and x
   # coordinate as the pair
    minh = PriorityQueue()
    min_val = INT_MAX
    for index in range(0, n):
 
        # Pop until the x-coordinates
        # difference is greater than K
        while (not minh.empty()):
            pi = minh.get()
            if((arr[index][0] - (-1*pi[1])) <= k):
                minh.put(pi)
                break
 
        # If not heap empty update min_val
        if (not minh.empty()):
            pi = minh.get()
            min_val = min(min_val, arr[index][0] + arr[index][1] + (-1*pi[1]))
            minh.put(pi)
 
        # Push the current pair in the heap
        minh.put([-1*arr[index][1]
                  - (-1*arr[index][0]),
                  -1*arr[index][0]])
 
    return min_val
 
# Driver Code
if __name__ == "__main__":
 
        # Input taken
    arr = [[1, 3], [2, 0],
           [5, 10], [6, -10]]
    K = 1
    n = 4
 
    # Function called
    print(MinimumValue(arr, n, K))
 
    # This code is contributed by rakeshsahni


Javascript




// JavaScript program for the above approach
const INT_MAX = 1000000009;
 
function MinimumValue(arr, n, k) {
    let minh = [];
    let min_val = INT_MAX;
 
    for (let index = 0; index < n; index++) {
 
        while (minh.length > 0) {
            let pi = minh.shift();
            if ((arr[index][0] - (-1 * pi[1])) <= k) {
                minh.unshift(pi);
                break;
            }
        }
 
        if (minh.length > 0) {
            let pi = minh.shift();
            min_val = Math.min(min_val, arr[index][0] + arr[index][1] + (-1 * pi[1]));
            minh.unshift(pi);
        }
 
        minh.push([-1 * arr[index][1] - (-1 * arr[index][0]), -1 * arr[index][0]]);
        minh.sort((a, b) => a[0] - b[0]);
    }
    return min_val;
}
//Driver Code
let arr = [[1, 3], [2, 0], [5, 10], [6, -10]];
let K = 1;
let n = 4;
console.log(MinimumValue(arr,k,n))
//This code is contributed by Shivam Tiwari


C#




using System;
using System.Collections.Generic;
public class GFG {
    // Utility function to find minimum value of equation
    static int MinimumValue(int[, ] arr, int n, int k)
    {
        // Minimum heap for storing (x-y) difference and x
        // coordinate as the pair A min heap is used to keep
        // track of the minimum values of (x - y) and x
        var minh = new SortedSet<Tuple<int, int> >(
            (x, y) = > x.Item1.CompareTo(y.Item1));
 
        int min_val = int.MaxValue;
 
        for (int index = 0; index < n; index++) {
            while (minh.Count > 0
                   && arr[index, 0] - minh.Min.Item2 > k) {
                minh.Remove(minh.Min);
            }
 
            if (minh.Count > 0) {
                min_val = Math.Min(
                    min_val, arr[index, 0] + arr[index, 1]
                                 + minh.Min.Item1);
            }
 
            minh.Add(
                Tuple.Create(arr[index, 1] - arr[index, 0],
                             arr[index, 0]));
        }
 
        return min_val;
    }
 
    static void Main(string[] args)
    { // Input taken
        int[, ] arr = new int[, ] {
            { 1, 3 }, { 2, 0 }, { 5, 10 }, { 6, -10 }
        };
        int K = 1;
        int n = 4;
        // Function call
        Console.WriteLine(MinimumValue(arr, n, K));
    }
}
// This code is contributed by Shivam Tiwari


Output

1

Time Complexity: O(NlogN)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments