Friday, November 15, 2024
Google search engine
HomeData Modelling & AIMinimize value of |A – X| + |B – Y| + |C...

Minimize value of |A – X| + |B – Y| + |C – Z| such that X * Y = Z

Given three integers A, B, and C, the task is to find the minimum possible value of |A – X| + |B – Y| + |C – Z| such that X * Y = Z.

Example:

Input: A = 19, B = 28, C = 522
Output: 2
Explanation: The most optimal choice of X, Y, and Z for the given A, B, and C are X = 18, Y = 29, and Z = 522. The equation X * Y = Z holds true and the value of |A – X| + |B – Y| + |C – Z| = 2 which is minimum possible.

Input: A = 11, B = 11, C = 121
Output: 0
Explanation: The given values of A, B, and C satisfies A * B = C. Therefore the most optimal choice is X = A, Y = B, and Z = C.

 

Approach: The above problem can be solved using the following observations:

  • The maximum value of |A – X| + |B – Y| + |C – Z| can be A + B + C for X, Y, and Z equal to 0.
  • Based on the above observation, iterating over all the values of i * j  such that i * j <= 2 * C  and choosing the best value is the optimal choice.

Therefore, iterate over all values of i in the range [1, 2*C], and for every i, iterate over all values of j such that i * j <= 2 * C and keep track of the minimum possible value of |A – i| + |B – j| + |C –  i * j|.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum possible
// value of |A - X| + |B - Y| + |C - Z|
// such that X * Y = Z for given A, B and C
int minimizeCost(int A, int B, int C)
{
    // Stores the minimum value of
    // |A - X| + |B - Y| + |C - Z|
    // such that X * Y = Z
    int ans = A + B + C;
 
    // Iterate over all values of i
    // in the range [1, 2*C]
    for (int i = 1; i <= 2 * C; i++) {
        int j = 0;
 
        // Iterate over all values of
        // j such that i*j <= 2*c
        while (i * j <= 2 * C) {
 
            // Update the value of ans
            ans = min(ans, abs(A - i) + abs(B - j)
                               + abs(i * j - C));
            j++;
        }
    }
 
    // Return answer
    return ans;
}
 
// Driver Code
int main()
{
    int A = 19, B = 28, C = 522;
    cout << minimizeCost(A, B, C);
 
    return 0;
}


Java




// Java program for the above approach
 
class GFG{
 
// Function to find the minimum possible
// value of |A - X| + |B - Y| + |C - Z|
// such that X * Y = Z for given A, B and C
public static int minimizeCost(int A, int B, int C)
{
    // Stores the minimum value of
    // |A - X| + |B - Y| + |C - Z|
    // such that X * Y = Z
    int ans = A + B + C;
 
    // Iterate over all values of i
    // in the range [1, 2*C]
    for (int i = 1; i <= 2 * C; i++) {
        int j = 0;
 
        // Iterate over all values of
        // j such that i*j <= 2*c
        while (i * j <= 2 * C) {
 
            // Update the value of ans
            ans = Math.min(ans, Math.abs(A - i) + Math.abs(B - j)
                               + Math.abs(i * j - C));
            j++;
        }
    }
 
    // Return answer
    return ans;
}
 
// Driver Code
public static void main(String args[])
{
    int A = 19, B = 28, C = 522;
    System.out.print(minimizeCost(A, B, C));
 
}
 
}
 
// This code is contributed by gfgking.


Python3




# Python Program to implement
# the above approach
 
# Function to find the minimum possible
# value of |A - X| + |B - Y| + |C - Z|
# such that X * Y = Z for given A, B and C
def minimizeCost(A, B, C):
 
    # Stores the minimum value of
    # |A - X| + |B - Y| + |C - Z|
    # such that X * Y = Z
    ans = A + B + C
 
    # Iterate over all values of i
    # in the range [1, 2*C]
    for i in range(1, 2 * C + 1):
        j = 0
 
        # Iterate over all values of
        # j such that i*j <= 2*c
        while (i * j <= 2 * C):
 
            # Update the value of ans
            ans = min(ans, abs(A - i) + abs(B - j) + abs(i * j - C))
            j += 1
     
 
    # Return answer
    return ans
 
 
# Driver Code
A = 19
B = 28
C = 522
print(minimizeCost(A, B, C))
 
# This code is contributed by Saurabh Jaiswal


C#




// C# program for the above approach
using System;
class GFG{
 
// Function to find the minimum possible
// value of |A - X| + |B - Y| + |C - Z|
// such that X * Y = Z for given A, B and C
public static int minimizeCost(int A, int B, int C)
{
   
    // Stores the minimum value of
    // |A - X| + |B - Y| + |C - Z|
    // such that X * Y = Z
    int ans = A + B + C;
 
    // Iterate over all values of i
    // in the range [1, 2*C]
    for (int i = 1; i <= 2 * C; i++) {
        int j = 0;
 
        // Iterate over all values of
        // j such that i*j <= 2*c
        while (i * j <= 2 * C) {
 
            // Update the value of ans
            ans = Math.Min(ans, Math.Abs(A - i) + Math.Abs(B - j)
                               + Math.Abs(i * j - C));
            j++;
        }
    }
 
    // Return answer
    return ans;
}
 
// Driver Code
public static void Main(String []args)
{
    int A = 19, B = 28, C = 522;
    Console.Write(minimizeCost(A, B, C));
}
}
 
// This code is contributed by shivanisinghss2110


Javascript




<script>
        // JavaScript Program to implement
        // the above approach
 
        // Function to find the minimum possible
        // value of |A - X| + |B - Y| + |C - Z|
        // such that X * Y = Z for given A, B and C
        function minimizeCost(A, B, C)
        {
         
            // Stores the minimum value of
            // |A - X| + |B - Y| + |C - Z|
            // such that X * Y = Z
            let ans = A + B + C;
 
            // Iterate over all values of i
            // in the range [1, 2*C]
            for (let i = 1; i <= 2 * C; i++) {
                let j = 0;
 
                // Iterate over all values of
                // j such that i*j <= 2*c
                while (i * j <= 2 * C) {
 
                    // Update the value of ans
                    ans = Math.min(ans, Math.abs(A - i) + Math.abs(B - j)
                        + Math.abs(i * j - C));
                    j++;
                }
            }
 
            // Return answer
            return ans;
        }
 
        // Driver Code
        let A = 19, B = 28, C = 522;
        document.write(minimizeCost(A, B, C));
 
     // This code is contributed by Potta Lokesh
    </script>


Output: 

2

 

Time Complexity: O(C*log C)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments