Monday, November 18, 2024
Google search engine
HomeData Modelling & AIMinimize sum of absolute differences between given Arrays by replacing at most...

Minimize sum of absolute differences between given Arrays by replacing at most 1 element from first Array

Given two arrays a[] and b[] of equal size. The task is to calculate the minimum sum of absolute differences for each index. It is allowed to replace at most 1 element of the first array with any value from the first array itself.

Example

Input: a[] = {1, 9, 4, 2}, b[] = {2, 3, 7, 1}
Output: 6
Explanation: Change the value of a[1] = 4 or 2. The minimum absolute difference will be |1-2| + |4-3| + |4-7| + |2-1| = 6.

Input: a[] = {1, 6, 4, 9}, b[] = {1, 6, 4, 9}
Output: 0
Explanation: There is no need to change any element.

 

Approach: This problem can be solved by using the Greedy Approach and Binary Search. Follow the below steps to solve the problem:

  • First calculate a variable sum = 0, that will store the initial absolute difference for each index between arrays a[] and b[].
  • Iterate in the range [0, n] and increment sum += abs(a[i] – b[i]).
  • Make new vector nums that will store elements of a[] in sorted order.
  • Now iterate from 0 to N-1 and for each element try to replace the value of a[i] to the closest possible value to b[i] from the array a[].
  • The above closest value can be found quickly with binary search
  • Use std::lower_bound function to find closest value.
  • Update the minimum possible answer after trying for each iteration.

Below is the implementation of the above approach: 

C++




// C++ implementation for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find minimum sum absolute
// difference from two arrays
int minAbsoluteDiffSum(int a[], int b[], int n)
{
    // Variable to store the
    // initial absolute difference sum
    int sum = 0;
    // Make another vector to
    // store the elements of a in
    // sorted order
    vector<int> nums(n);
 
    for (int i = 0; i < n; i++) {
        nums[i] = a[i];
        sum += abs(a[i] - b[i]);
    }
    // Variable to store the minimum sum
    int min_answer = sum;
    // Sort the copy array of a
    sort(nums.begin(), nums.end());
 
    for (int i = 0; i < n; i++) {
        // Binary Search for elements
        // just greater than b[i].
        int it = lower_bound(nums.begin(),
                             nums.end(), b[i])
                 - nums.begin();
        // Take minimum from just
        // greater and less than b[i].
        int cur = min(
            abs(nums[min(it, (n - 1))] - b[i]),
            abs(nums[max(0, it - 1)] - b[i]));
        // update the minimum answer
        if (cur < abs(a[i] - b[i])) {
            min_answer = min(
                min_answer,
                sum - abs(a[i] - b[i]) + cur);
        }
    }
    return min_answer;
}
 
// Driver Code
int main()
{
    int a[] = { 1, 9, 4, 2 };
    int b[] = { 2, 3, 7, 1 };
    int N = sizeof(a) / sizeof(a[0]);
    cout << minAbsoluteDiffSum(a, b, N);
}


Java




// Java implementation for the above approach
import java.util.Arrays;
 
class GFG {
 
    // Function to find minimum sum absolute
    // difference from two arrays
    public static int minAbsoluteDiffSum(int a[], int b[], int n)
    {
       
        // Variable to store the
        // initial absolute difference sum
        int sum = 0;
       
        // Make another vector to
        // store the elements of a in
        // sorted order
        int[] nums = new int[n];
 
        for (int i = 0; i < n; i++) {
            nums[i] = a[i];
            sum += Math.abs(a[i] - b[i]);
        }
       
        // Variable to store the minimum sum
        int min_answer = sum;
       
        // Sort the copy array of a
        Arrays.sort(nums);
 
        for (int i = 0; i < n; i++)
        {
           
            // Binary Search for elements
            // just greater than b[i].
            int it = lower_bound(nums, 0, nums.length, b[i]);
           
            // Take minimum from just
            // greater and less than b[i].
            int cur = Math.min(Math.abs(nums[(Math.min(it, (n - 1)))] - b[i]),
                    Math.abs(nums[(Math.max(0, it - 1))] - b[i]));
           
            // update the minimum answer
            if (cur < Math.abs(a[i] - b[i])) {
                min_answer = Math.min(min_answer, sum - Math.abs(a[i] - b[i]) + cur);
            }
        }
        return min_answer;
    }
 
    public static int lower_bound(int[] a, int low, int high, int e) {
        if (low < 0)
            return 0;
        if (low >= high) {
            if (e <= a[low])
                return low;
            return low + 1;
        }
        int mid = (int)Math.floor((low + high) / 2);
        if (e > a[mid])
            return lower_bound(a, mid + 1, high, e);
        return lower_bound(a, low, mid, e);
 
    }
 
    // Driver Code
    public static void main(String args[]) {
        int a[] = { 1, 9, 4, 2 };
        int b[] = { 2, 3, 7, 1 };
        int N = a.length;
        System.out.println(minAbsoluteDiffSum(a, b, N));
    }
}
 
// This code is contributed by saurabh_jaiswal.


Python3




# python implementation for the above approach
from bisect import bisect_left
 
# Function to find minimum sum absolute
# difference from two arrays
def minAbsoluteDiffSum(a, b, n):
 
    # Variable to store the
    # initial absolute difference sum
    sum = 0
     
    # Make another vector to
    # store the elements of a in
    # sorted order
    nums = [0 for _ in range(n)]
 
    for i in range(0, n):
        nums[i] = a[i]
        sum += abs(a[i] - b[i])
 
    # Variable to store the minimum sum
    min_answer = sum
     
    # Sort the copy array of a
    nums.sort()
 
    for i in range(0, n):
       
        # Binary Search for elements
        # just greater than b[i].
        it = bisect_left(nums, b[i], 0, len(nums))
         
        # Take minimum from just
        # greater and less than b[i].
        cur = min(
            abs(nums[min(it, (n - 1))] - b[i]),
            abs(nums[max(0, it - 1)] - b[i]))
         
        # update the minimum answer
        if (cur < abs(a[i] - b[i])):
            min_answer = min(
                min_answer,
                sum - abs(a[i] - b[i]) + cur)
 
    return min_answer
 
# Driver Code
if __name__ == "__main__":
 
    a = [1, 9, 4, 2]
    b = [2, 3, 7, 1]
    N = len(a)
    print(minAbsoluteDiffSum(a, b, N))
 
# This code is contributed by rakeshsahni


C#




// C# implementation for the above approach
using System;
 
class GFG {
 
    // Function to find minimum sum absolute
    // difference from two arrays
    public static int minAbsoluteDiffSum(int[] a, int[] b, int n)
    {
       
        // Variable to store the
        // initial absolute difference sum
        int sum = 0;
       
        // Make another vector to
        // store the elements of a in
        // sorted order
        int[] nums = new int[n];
 
        for (int i = 0; i < n; i++) {
            nums[i] = a[i];
            sum += Math.Abs(a[i] - b[i]);
        }
       
        // Variable to store the minimum sum
        int min_answer = sum;
       
        // Sort the copy array of a
        Array.Sort(nums);
 
        for (int i = 0; i < n; i++)
        {
           
            // Binary Search for elements
            // just greater than b[i].
            int it = lower_bound(nums, 0, nums.Length, b[i]);
           
            // Take minimum from just
            // greater and less than b[i].
            int cur = Math.Min(Math.Abs(nums[(Math.Min(it, (n - 1)))] - b[i]),
                    Math.Abs(nums[(Math.Max(0, it - 1))] - b[i]));
           
            // update the minimum answer
            if (cur < Math.Abs(a[i] - b[i])) {
                min_answer = Math.Min(min_answer, sum - Math.Abs(a[i] - b[i]) + cur);
            }
        }
        return min_answer;
    }
 
    public static int lower_bound(int[] a, int low, int high, int e) {
        if (low < 0)
            return 0;
        if (low >= high) {
            if (e <= a[low])
                return low;
            return low + 1;
        }
        int mid = (int)((low + high) / 2);
        if (e > a[mid])
            return lower_bound(a, mid + 1, high, e);
        return lower_bound(a, low, mid, e);
 
    }
 
    // Driver Code
    public static void Main() {
        int[] a = { 1, 9, 4, 2 };
        int[] b = { 2, 3, 7, 1 };
        int N = a.Length;
        Console.Write(minAbsoluteDiffSum(a, b, N));
    }
}
 
// This code is contributed by saurabh_jaiswal.


Javascript




<script>
 
      // JavaScript Program to implement
      // the above approach
      function lower_bound(a, low, high, e) {
          if (low < 0) return 0;
          if (low >= high) {
              if (e <= a[low]) return low;
              return low + 1;
          }
          let mid = Math.floor((low + high) / 2);
          if (e > a[mid])
              return lower_bound(a, mid + 1, high, e);
          return lower_bound(a, low, mid, e);
 
      }
 
      // Function to find minimum sum absolute
      // difference from two arrays
      function minAbsoluteDiffSum(a, b, n)
      {
       
          // Variable to store the
          // initial absolute difference sum
          let sum = 0;
          // Make another vector to
          // store the elements of a in
          // sorted order
          let nums = new Array(n);
 
          for (let i = 0; i < n; i++) {
              nums[i] = a[i];
              sum += Math.abs(a[i] - b[i]);
          }
          // Variable to store the minimum sum
          let min_answer = sum;
          // Sort the copy array of a
          nums.sort()
 
          for (let i = 0; i < n; i++) {
              // Binary Search for elements
              // just greater than b[i].
              let it = lower_bound(nums, 0,
                  nums.length, b[i])
 
              // Take minimum from just
              // greater and less than b[i].
              let cur = Math.min(
                  Math.abs(nums[(Math.min(it, (n - 1)))] - b[i]),
                  Math.abs(nums[(Math.max(0, it - 1))] - b[i]));
              // update the minimum answer
              if (cur < Math.abs(a[i] - b[i])) {
                  min_answer = Math.min(
                      min_answer,
                      sum - Math.abs(a[i] - b[i]) + cur);
              }
          }
          return min_answer;
      }
 
      // Driver Code
      let a = [1, 9, 4, 2];
      let b = [2, 3, 7, 1];
      let N = a.length
      document.write(minAbsoluteDiffSum(a, b, N));
 
  // This code is contributed by Potta Lokesh
  </script>


 
 

Output: 

6

 

Time Complexity: O(N log N), The loop that creates a copy of array a and computes the initial absolute difference sum runs in O(N) time.The sorting operation on the copy array of a takes O(N log N) time.The loop that performs the binary search and updates the minimum sum runs in O(N log N) time because it contains a binary search operation which takes O(log N) time in the worst case, and it is performed n times.Therefore, the overall time complexity of this implementation is O(N log N). 
Auxiliary Space: O(N), The space used by the copy array of a is O(N) because it has n elements.The space used by the vector to store the sorted copy array of a is also O(N).Therefore, the overall space complexity of this implementation is O(N).

 

Last Updated :
08 May, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments