Saturday, November 16, 2024
Google search engine
HomeData Modelling & AIMinimize bit flips such that each continuous segment of same bit has...

Minimize bit flips such that each continuous segment of same bit has even length

Given a binary string S of even size that contains only 0s and 1s, the task is to find the minimum flips (that is 0 to 1 or 1 to 0) such that every contiguous subsegment that contains the same bit is of even size. 

Examples: 

Input: S = “1110011000 “
Output: 3
Explanation: Change S[2], S[5] and S[6] to ‘0’. 
After that S becomes “1100000000”, it can be divided into 
“11” and “00000000”, which have lengths 2 and 8 respectively. 
There are other ways to operate 3 times such as 
“1111110000”, “1100001100”, “1111001100”. 

Input: 100110 
Output: 3
Explanation: The given string can be converted into 000000 
with 3 operations or 111111.

Approach: To solve the problem follow the below observations:

It can be said that we have to divide the string into many adjacent binaries with the length of 2 where the strings will be either 00 or 11. So, we have to only take care of sequence where s[i] != s[i+1] 

  • Now in order to find a minimum operation sequence like  “1011”  should be converted to “1111”  and  “0100” should be converted to “0000”. 
  • So, the minimum number of operations is 1. Hence once we make s[i] = s[i + 1] we will move i to i+2  to check whether they are equal or not.

Follow the steps mentioned below to implement the idea:

  • Iterate from i = 0 to N-1:
    • Check if S[i] is the same as S[i+1].
    • If they are the same then no bit flip is required.
    • Otherwise, increment the number of flips by 1.
    • After each check move from i to i+2.
  • The total number of flips calculated is the required minimum answer.

Below is the implementation of the above approach:

C++14




// C++ code to implement the approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum number of bit flips
int solve(string s)
{
    // Variable to store the minimum number of flips
    int ans = 0;
 
    int n = s.size();
 
    // Increment i by 2
    for (int i = 0; i < n; i += 2) {
        if (s[i] != s[i + 1])
            ans++;
    }
 
    // Return the answer
    return ans;
}
 
// Driver code
int main()
{
    string S = "1110011000";
 
    // Function Call
    cout << solve(S);
    return 0;
}


Java




// Java code to implement the above approach
import java.io.*;
import java.util.*;
 
class GFG {
 
  // Function to find the minimum number of bit flips
  static int solve(String s)
  {
    // Variable to store the minimum number of flips
    int ans = 0;
 
    int n = s.length();
 
    // Increment i by 2
    for (int i = 0; i < n; i += 2) {
      if (s.charAt(i) != s.charAt(i+1))
        ans++;
    }
 
    // Return the answer
    return ans;
  }
 
  // Driver Code
  public static void main(String[] args)
  {
    String S = "1110011000";
 
    // Function Call
    System.out.print(solve(S));
  }
}
 
// This code is contributed by sanjoy_62.


Python3




# Python code to implement the above approach
 
# Function to find the minimum number of bit flips
def solve(s):
   
    # Variable to store the minimum number of flips
    ans = 0
    n = len(s)
 
    # Increment i by 2
    for i in range(0, n, +2):
        if(s[i] is not s[i+1]):
            ans += 1
 
    # Return the answer
    return ans
 
S = "1110011000"
 
# Function call
print(solve(S))
 
# This code is contributed by lokeshmvs21.


C#




// C# code to implement the approach
using System;
using System.Collections.Generic;
 
class GFG
{
 
  // Function to find the minimum number of bit flips
  static int solve(string s)
  {
    // Variable to store the minimum number of flips
    int ans = 0;
 
    int n = s.Length;
 
    // Increment i by 2
    for (int i = 0; i < n; i += 2) {
      if (s[i] != s[i+1])
        ans++;
    }
 
    // Return the answer
    return ans;
  }
 
  // Driver Code
  public static void Main()
  {
    string S = "1110011000";
 
    // Function Call
    Console.WriteLine(solve(S));
  }
}
 
// This code is contributed by code_hunt.


Javascript




<script>
        // JavaScript code for the above approach
 
 
        // Function to find the minimum number of bit flips
        function solve(s) {
            // Variable to store the minimum number of flips
            let ans = 0;
 
            let n = s.length;
 
            // Increment i by 2
            for (let i = 0; i < n; i += 2) {
                if (s[i] != s[i + 1])
                    ans++;
            }
 
            // Return the answer
            return ans;
        }
 
        // Driver code
        let S = "1110011000";
 
        // Function Call
        document.write(solve(S));
 
 // This code is contributed by Potta Lokesh
 
    </script>


Output

3

Time complexity: O(N)
Auxiliary Space: O(1)

Another Approach:

  • We start by defining a function solve that takes a string s as input and returns an integer.
  • We then initialize the variables n, count, and flips. n is the length of the string s, count is the length of the current segment, and flips is the number of flips needed.
  • We then loop through the string s starting from the second character (i=1) to the end (i<n).
  • Inside the loop, we check if the current character s[i] is different from the previous character s[i-1]. If it is different, we have a new segment and we increment the count variable.
  • If the current character s[i] is the same as the previous character s[i-1], we check if the length of the current segment count is odd. If it is odd, we need to flip one bit in that segment to make it even, so we increment the flips variable.
  • We then reset the count variable to 1 for the next segment.
  • After the loop, we need to check the length of the last segment, which may not have been accounted for in the loop. If it is odd, we need to flip one bit in that segment to make it even, so we increment the flips variable again.
  • Finally, we return the total number of flips needed.

Below is the implementation of the above approach:

C++




#include <iostream>
using namespace std;
 
int solve(string s) {
    int n = s.size();
    int count = 0, flips = 0;
 
    for (int i = 1; i < n; i++) {
        if (s[i] != s[i-1]) {
            count++;
        } else {
            if (count % 2 == 1) {
                flips++;
            }
            count = 1;
        }
    }
 
    if (count % 2 == 1) {
        flips++;
    }
 
    return flips;
}
int main()
{
    string S = "1110011000";
 
    // Function Call
    cout << solve(S);
    return 0;
}


Java




import java.util.*;
 
public class Main {
    public static int solve(String s) {
        int n = s.length();
        int count = 0, flips = 0;
 
        for (int i = 1; i < n; i++) {
            if (s.charAt(i) != s.charAt(i-1)) {
                count++;
            } else {
                if (count % 2 == 1) {
                    flips++;
                }
                count = 1;
            }
        }
 
        if (count % 2 == 1) {
            flips++;
        }
 
        return flips;
    }
 
    public static void main(String[] args) {
        String S = "1110011000";
 
        // Function Call
        System.out.println(solve(S));
    }
}


Python3




def solve(s):
    # Get the length of the string
    n = len(s)
 
    # Initialize variables
    count = 0
    flips = 0
 
    # Loop through the string
    for i in range(1, n):
        # If the current character is different from the previous one
        if s[i] != s[i-1]:
            count += 1
        else:
            # If the count is odd, increment flips
            if count % 2 == 1:
                flips += 1
            count = 1
 
    # If the count is odd, increment flips
    if count % 2 == 1:
        flips += 1
 
    # Return the number of flips
    return flips
 
 
# Define the input string
S = "1110011000"
 
# Function Call
print(solve(S))


C#




using System;
 
namespace CodeTranslation
{
    class Program
    {
        static int Solve(string s)
        {
              // Get the length of the string
            int n = s.Length;
           
              // Initialize variables
            int count = 0, flips = 0;
           
              // Loop through the string
            for (int i = 1; i < n; i++)
            {
                  // If the current character is different from the previous one
                if (s[i] != s[i - 1])
                {
                    count++;
                }
                else
                {
                      // If the count is odd, increment flips
                    if (count % 2 == 1)
                    {
                        flips++;
                    }
                    count = 1;
                }
            }
               
              // If the count is odd, increment flips
            if (count % 2 == 1)
            {
                flips++;
            }
           
              // Return the number of flips
            return flips;
        }
 
        static void Main(string[] args)
        {
            string S = "1110011000";
            // Function Call
            Console.WriteLine(Solve(S));
        }
    }
}


Javascript




function solve(s) {
    let n = s.length;
    let count = 0,
        flips = 0;
 
    // Iterate through the string
    for (let i = 1; i < n; i++) {
        // If the current character is different from the previous one
        if (s[i] != s[i - 1]) {
            count++;
        } else {
            // If the count of different characters is odd
            if (count % 2 == 1) {
                flips++;
            }
            count = 1;
        }
    }
 
    // Check for the last segment of different characters
    if (count % 2 == 1) {
        flips++;
    }
 
    return flips;
}
 
// Define the input string
let S = "1110011000";
 
// function call
console.log(solve(S));


Output

3

Time complexity: O(N)
Auxiliary Space: O(1)

Last Updated :
21 Sep, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments