Sunday, November 17, 2024
Google search engine
HomeData Modelling & AIMaximum value of B less than A such that A ^ B...

Maximum value of B less than A such that A ^ B = A + B

Given an integer A, the task is to find the maximum value possible(B) which is less than A, such that xor of these two numbers A and B are equal to their sum, that is A ^ B = A + B.

Examples:  

Input: A = 4 
Output:
Explanation: 
There are many such integers, such that A ^ B = A + B 
Some of these integers are – 
4 ^ 3 = 4 + 3 = 7 
4 ^ 2 = 4 + 2 = 6 
4 ^ 1 = 4 + 1 = 5 
4 ^ 0 = 4 + 0 = 4 
The maximum of these values is 3

Input:
Output:
There is no integer except 0 such that A + B = A ^ B 

Approach: The idea is to use the fact that 

A + B &= (A \wedge B) + 2*(A \& B) and to get the value of A + B = A \wedge B, the value of (A & B) must be equal to 0.   

=> A & B = 0
=> B = ~A

For Example:  

A = 4 (1 0 0)  
B = ~ A = (0 1 1) = 3 

 Below is the implementation of the above approach:

C++




// C++ implementation to find
// maximum value of B such that
// A ^ B = A + B
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the maximum
// value of B such that A^B = A+B
void maxValue(int a)
{
     
    // Binary Representation of A
    string c = bitset<3>(a).to_string();
    string b = "";
     
    // Loop to find the negation
    // of the integer A
    for(int i = 0; i < c.length(); i++)
    {
        if ((c[i] - '0') == 1)
            b += '0';
        else
            b += '1';
    }
        
    // Output
    cout << bitset<3>(b).to_ulong();
}
 
// Driver code
int main()
{
    int a = 4;
     
    // Function Call
    maxValue(a);
     
    return 0;
}
 
// This code is contributed by divyeshrabadiya07


Java




// Java implementation to find
// maximum value of B such that
// A ^ B = A + B
  
// Function to find the maximum
// value of B such that A^B = A+B
class GFG
{
 
static void maxValue(int a)
{
      
    // Binary Representation of A
    String c = Integer.toBinaryString(a);
     
    String b = "";
      
    // Loop to find the negation
    // of the integer A
    for (int i = 0; i < c.length(); i++)
    {
        if((c.charAt(i)-'0')==1)
            b +='0';
        else
            b+='1';
    }
      
    // output
    System.out.print(Integer.parseInt(b, 2));
    
}
  
// Driver Code
public static void main(String []args)
{
    int a = 4;
      
    // Function Call
    maxValue(a);
}
}
 
// This code is contributed by chitranayal


Python3




# Python3 implementation to find
# maximum value of B such that
# A ^ B = A + B
 
# Function to find the maximum
# value of B such that A^B = A+B
def maxValue(a):
     
    # Binary Representation of A
    a = bin(a)[2:]
     
    b = ''
     
    # Loop to find the negation
    # of the integer A
    for i in list(a):
        b += str(int(not int(i)))
         
    # output
    print(int(b, 2))
    return int(b, 2)
 
# Driver Code
if __name__ == '__main__':
    a = 4
     
    # Function Call
    maxValue(a)


C#




// C# implementation to find
// maximum value of B such that
// A ^ B = A + B
   
// Function to find the maximum
// value of B such that A^B = A+B
using System;
using System.Collections.Generic;
 
class GFG
{
  
static void maxValue(int a)
{
       
    // Binary Representation of A
    String c = Convert.ToString(a, 2);
      
    String b = "";
       
    // Loop to find the negation
    // of the integer A
    for (int i = 0; i < c.Length; i++)
    {
        if((c[i] - '0') == 1)
            b += '0';
        else
            b += '1';
    }
       
    // output
    Console.Write(Convert.ToInt32(b, 2));
     
}
   
// Driver Code
public static void Main(String []args)
{
    int a = 4;
       
    // Function Call
    maxValue(a);
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// Javascript implementation to find
// maximum value of B such that
// A ^ B = A + B
 
// Function to find the maximum
// value of B such that A^B = A+B
function maxValue(a)
{
     
    // Binary Representation of A
    var c = a.toString(2);
    var b = "";
     
    // Loop to find the negation
    // of the integer A
    for(var i = 0; i < c.length; i++)
    {
        if ((c[i] - '0') == 1)
            b += '0';
        else
            b += '1';
    }
        
    // Output
    document.write(parseInt(b,2));
}
 
// Driver code
var a = 4;
 
// Function Call
maxValue(a);
</script>


Output: 

3

 

Performance Analysis: 

  • Time Complexity: In the above-given approach, there is the conversion from decimal to binary which takes O(logN) time in the worst case. Therefore, the time complexity for this approach will be O(logN).
  • Auxiliary Space Complexity: In the above-given approach, there is no extra space used. Therefore, the auxiliary space complexity for the above approach will be O(1)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments